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Аннотация
В работе проведено комплексное изучение путём численного (математического) и 
имитационного (компьютерного) моделирования процесса разряда конденсаторной 
батареи через образец в виде медной проволоки в установке для изучения эффекта 
электропластичности. Электропластический эффект – это явление, при котором  
происходит снижение предела текучести под воздействием электрического тока.  
Представлена запатентованная установка для изучения эффекта электропластичности. 
Получены первые результаты, выполненные на данной установке, которые относятся 
к сравнению степени влияния эффекта электропластичности на образцы из меди  
и алюминия. Из-за более высокой удельной электропроводности и меньшего скин-эффекта 
медных образцов эффект электропластической деформации в них проявлялся более 
наглядно, в результате чего было принято решение начать более детальные исследования 
именно с образцами в виде медной проволоки. Приведены дифференциальные уравнения, 
описывающие токовые кривые, получающиеся при разряде заряженной батареи 
конденсаторов через образец в виде медной проволоки без учета изменений внутренней 
структуры образцов. При помощи метода наименьших квадратов и дискретного 
преобразования Фурье были оценены параметры индуктивности и сопротивления всей 
системы, соответственно. Численно, с погрешностью не более 2%, определена общая  
емкость рабочей батареи конденсаторов. Разработаны две идентичные имитационные  
модели для вычисленных параметров в пакете программ MatLab и среде SimInTech,  
состоящие из последовательно соединенных RLC элементов, измерительных блоков 
(амперметр и вольтметр) и осциллографов. Произведено сравнение результатов 
моделирования с полученной токовой кривой в ходе натурных испытаний при тех же 
начальных условиях. Сделаны выводы о практически полном предсказании обеими 
моделями таких параметров, как пиковое значение тока и длина импульса в пределах 
погрешности измерительного оборудования.
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Abstract
A comprehensive study was carried out by numerical (mathematical) and simulation 
(computer) modeling of the discharge process of a capacitor bank through a sample in the form  
of a copper wire in an installation for studying the effect of electroplasticity. The electroplastic 
effect is a phenomenon in which the yield strength decreases under the influence of electric 
current. A patented installation for studying the effect of electroplasticity is presented. The first 
results performed at this installation have been obtained, which relate to comparing the degree 
of influence of the electroplasticity effect on copper and aluminum samples. Due to the higher 
electrical conductivity and lower skin effect of the copper samples, the effect of electroplastic 
deformation in them was more evident, as a result of which it was decided to begin more  
detailed studies with samples in the form of copper wire. Differential equations describing the 
current curves obtained when a charged battery of capacitors is discharged through a sample  
in the form of a copper wire without taking into account changes in the internal structure of 
the samples are given. Using the least squares method and the discrete Fourier transform, 
the inductance and resistance parameters of the entire system were estimated, respectively.  
The total capacity of the capacitor bank is determined numerically, with an error of no more  
than 2%. Two identical simulation models have been developed for the calculated parameters  
in the MatLab software package and the SimInTech environment, consisting of RLC elements 
connected in series, measuring units (ammeter and voltmeter) and oscilloscopes. The simulation 
results are compared with the current curve obtained during field tests under the same initial 
conditions. Conclusions are drawn about the almost complete prediction by both models 
of parameters such as the peak current value and pulse length within the error limits of the  
measuring equipment.
Keywords: electroplastic effect, capacitor bank, discharge, copper wire, pulse current,  
simulation, current curves, error, MatLab, SimInTech
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Введение
Электропластический эффект (ЭЭ) – явление, при котором происходит снижение 

предела текучести под воздействием электрического тока. В 1969 г. Троицкий [1] 
обнаружил, что импульсы электрического тока уменьшают усилия, необходимые 
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для инициирования деформации в металлах. На графике (рис. 1) в виде первичной 
диаграммы растяжения показаны первые результаты экспериментальных 
исследований Троицкого. Величина импульса тока варьировалась от 600 до 1800 А,  
длина (протяженность) импульса составляла примерно 0,1 мс. Напряжение изме-
нялось ступенчато от 50 до 150 В с интервалом 25 В.

На графике видно, что после упругой области наблюдаются скачки деформа- 
ции, возрастающие по своей величине с ростом напряжения на клеммах разрядного 
устройства. Величина таких деформационных скачков свидетельствует о значитель-
ном приращении пластической деформации в момент прохождения импульса тока.

В настоящее время ЭЭ является одним из наиболее эффективных способов 
упрощения производственных процессов в обработке металлов [2, 3], в улучше- 
нии их свойств [4, 5], а также при залечивании трещин [6–9].

Работа по изучению ЭЭ в Политехническом институте (филиале) СВФУ им. 
М.К. Аммосова в г. Мирном (далее МПТИ (ф) СВФУ) началась с обзора последних 
достижений в области электропластической обработки металлов давлением [10], 
теоретического объяснения эффекта электропластичности [11] и его молекулярно-
динамического моделирования [12].

В дальнейшем для проведения экспериментальных исследований появилась 
необходимость измерения импульсных токов большой величины, не только по 
амплитуде, но и по форме импульса, т. е. требовалась информация об эволюции 
моментального значения тока в импульсе. В работе [13] была описана разработка 
способа измерения импульсных токов большой величины.

В 2024 г. на кафедре электроэнергетики и автоматизации промышленного 
производства МПТИ (ф) СВФУ на базе лабораторий физики и теоретических основ 
электротехники была собрана первая установка для изучения ЭЭ (рис. 2).

Рис. 1. Первичная диаграмма растяжения монокристалла цинка 
при импульсной обработке электрическим током [1]

Fig. 1. Primary stretching diagram of a zinc single crystal during pulsed electric current treatment [1]

Рис. 2. Экспериментальная установка для изучения эффекта электропластичности (а) 
и её принципиальная электрическая схема (б) [13]

Fig. 2. Experimental installation for studying the effect of electroplasticity (a) 
and its basic electrical circuit (b) [13]
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В 2025 г. был получен патент на изобретение «Автоматизированная лаборатор-
ная установка для исследования эффекта электропластичности» [14]. Схема 
механической части установки для растяжения образца и схема расположения 
контрольно-измерительных датчиков показаны на рис. 2. Пронумерованные 
элементы и принцип работы подробно описаны в вышеуказанном патенте.

Первые опыты, проведенные на данной установке, относились к сравнению 
степени влияния эффекта электропластичности на образцы из меди и алюминия 
[15]. Из-за более высокой удельной электропроводности и меньшего скин-эффекта 
медных образцов эффект электропластической деформации в них проявлялся бо-
лее наглядно, в результате чего было принято решение начать более детальные 
исследования именно с образцами в виде медной проволоки [16]. На графиках  
рис. 4 показаны увеличение растягивающего напряжения проволоки под действием 
электрического импульса и соответствующее повышение температуры проволоки в 
зависимости от напряжения конденсаторной батареи, разряженной на проволоке. Причём 
для исследования использовались два вида медной проволоки: обычная и отожжённая.

Результаты, представленные на рис. 4, получены для обычных (черные кривые)  
и отожженных (красные кривые) медных проволок. Увеличение напряжения 
(рис. 4а), вызванное электрическим импульсом, и соответствующее повышение

Рис. 3. Схемы автоматизированной лабораторной установки для исследования эффекта 
электропластичности: а) механическая часть, б) расположение датчиков [14]

Fig. 3. Diagrams of an automated laboratory installation for studying the effect of electroplasticity: 
a) mechanical part, b) location of sensors [14]

Рис. 4. Графики увеличения растягивающего напряжения проволоки под действием 
электрического импульса (а) и соответствующее повышение температуры проволоки 

в зависимости от напряжения конденсаторной батареи (б) [16]
Fig. 4. Graphs of an increase in the tensile voltage of the wire under the action of an electric 
pulse (a) and a corresponding increase in the temperature of the wire depending on the voltage  

of the capacitor bank (b) [16]
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температуры (рис. 4б) показаны как функции напряжения на конденсаторе. На 
вставках (рис. 4 в, г) показаны кривые в логарифмической шкале, отображающие 
зависимости ∆eJ и ∆T от напряжения.

Таким образом, как уже отмечалось ранее, появляется необходимость в 
постоянной нормировке импульса тока по величине заряда конденсаторной батареи 
для обеспечения точности дальнейших аналитических вычислений параметров 
процесса электроимпульсной обработки металлов.

Материалы и методы
Для описания токовых кривых, получающихся при разряде заряженной батареи 

конденсаторов через образец в виде медной проволоки без учета изменений 
внутренней структуры образцов, можно записать дифференциальное уравнение:

L d q
dt

R dq
dt

q
C

� � � � �
2

2
0, (1)

где необходимо знать значения L, R и C (индуктивность, сопротивление и емкость 
соответственно), чтобы найти функцию q(t) при известном значении q(0).

В самом начале токовой кривой сопротивлением всей системы можно пренебречь. 
Большая часть напряжения будет вызвана большой производной тока. Считая, что:

L dI
dt

U� � , (2)

индуктивность всей системы была оценена в L=(4,60±0,03)·10-6 (Гн) при помощи 
метода наименьших квадратов с коэффициентом корреляции 0,99994 (рис. 5а).

Оценив индуцированное всей системой напряжение на всем протяжении 
импульса, благодаря величине L, получили зависимость сопротивления от времени:

R t
U t L

dI t
dt

I t
� � �

� � � �
� �

� �
. (3)

Произведя численное дифференцирование тока и фильтрацию его паразитных 
частотных составляющих при помощи дискретного преобразования Фурье,  
получили численное представление функции R(t) (рис. 5б). Численное дифферен-
цирование производилось при помощи свойства Фурье-преобразования, общий  
вид которого выражается формулой:

Ô Ô
d
dt
f t i f t� ��

��
�
��
� � � ��� ��� , (4)

где f – функция вещественной переменной, t – время, ω – частота.
Таким образом, значение сопротивления всей системы (куда входит сопротив-

ление образца подводящих проводов и контактов) было определено как 
R=0,01181±0,00007 (Ом). Пик в районе t=0,6 (мс) является следствием изменения 
внутренней структуры образца и на данный момент не является предметом  
нашего рассмотрения.

Поскольку в электрической части установки (в рабочей конденсаторной батарее) 
использованы 36 однотипных электролитических конденсаторов с емкостью 
каждого 3300 мкФ и рабочим напряжением до 400 В, то общая емкость рабочей 
батареи конденсаторов при последовательно-параллельном соединении и рабочем 
напряжении до 800 В составит 29 700 мкФ. Этот параметр с погрешностью до 2% 
был оценён в работе [13].
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Рис. 5. Графические зависимости индуцированного напряжения от производной тока 
по времени (а) и сопротивления от времени (б)

Fig. 5. Graphical dependences of the induced voltage on the time derivative of current (a) 
and resistance on time (b)

Результаты и обсуждение
По итогам всех измерений, вычислений и математического моделирования для 

заданных параметров, представленных в табл., были созданы имитационные модели 
в пакете программ MatLab и среде SimInTech. Для наглядности и сравнения были 
выбраны зарубежная и отечественная программы. Использование возможностей 
MatLab без локальной установки обеспечивается открытой веб-платформой MatLab 
Online, доступ к которой можно получить, зарегистрировавшись на сайте mathworks.
com. Доступ к SimInTech обеспечивается по учебной лицензии МПТИ (ф) СВФУ, 
действующей до 31.07.2026 г.

Модели являются весьма простыми и состоят из последовательно соединенных 
RLC элементов, измерительных блоков (амперметр и вольтметр) и осциллографов.

Таблица

Параметры для имитационного моделирования

Table
Input parameters for simulation

Параметр / 
Parameter 

Индуктивность 
/ Inductance

Сопротивление 
/ Resistance

Емкость 
/ Electric 
Capacity

Начальное 
напряжение / 
Initial Voltage

Обозначение 
(единица измерения) 

/ Measurement
L (Гн) / L (H) R (Ом) / R (Ohm) C (Ф) / C (F) U (В) / U (V)

Величина / Value 4,6·10-6 11,8·10-3 29,7·10-3 10

MatLab (Matrix Laboratory) – это пакет программ, предназначенный для 
аналитического и численного решения различных математических задач,  
а также для моделирования электротехнических и электромеханических  
систем [17]. В состав пакета MatLab входит ядро компьютерной алгебры Maple 
и библиотека блоков Simulink, а также десятки других пакетов расширений,  
что позволяет моделировать сложные технические системы.

SimInTech (Simulation In Technic) – это отечественная среда динамического 
моделирования технических систем, предназначенная для расчётной проверки 
работы систем управления сложными техническими объектами [18]. Является 
собственной разработкой ООО «3В Сервис». Номер в едином реестре  
российских ПЭВМ: 2379.
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Блок-схема модели и результаты моделирования графика кривой тока при 
начальных условиях в пакете программ MatLab показаны на рис. 6.

Рис. 6. Блок-схема модели (а) и результаты моделирования (б) в пакете программ MatLab
Fig. 6. The block diagram of the model (a) and the simulation results (b) in the MatLab software package

Рис. 7. Блок-схема модели (а) и результаты моделирования (б) в среде SimInTech
Fig. 7. The block diagram of the model (a) and the simulation results (b) in the SimInTech 

environment

Рис. 8. Токовая кривая, полученная в ходе натурных испытаний, численным методом
Fig. 8. The current curve obtained during field tests using the numerical method

Аналогичная блок-схема модели и результаты моделирования графика кривой 
тока при тех же начальных условиях в среде SimInTech показаны на рис. 7.

Обе модели показали идентичные результаты. Пиковое значение тока в обоих 
случаях равно 448 А, а время достижения этого значения составляет 0,43 мс.

Если сравнивать результаты моделирования с полученной токовой кривой  
в ходе натурных испытаний при таких же начальных условиях (рис. 8), то можно 
сделать вывод, что созданные имитационные модели полностью предсказывают 
такие параметры, как пиковое значение тока и длина импульса в пределах 
погрешности измерительного оборудования.
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В результате проведенных исследований была разработана и запатентована 
программа для ЭВМ «Программа для автоматической нормировки импульса тока 
по величине заряда батареи конденсаторов» [19]. Однако требуется дальнейшее 
изучение влияния изменения сопротивления образца в результате изменения его 
внутренней структуры на токовую кривую для получения более точной модели.

Заключение
Проведённое моделирование и полученные результаты показывают важную роль 

комплексного изучения процесса разряда конденсаторной батареи через образец  
в виде медной проволоки в установке для изучения эффекта электропластичности, 
которая заключается в обеспечении точности дальнейших аналитических 
вычислений параметров процесса электроимпульсной обработки металлов.

Численное моделирование позволило определить необходимые исходные 
данные, а полученные имитационные модели с высокой точностью позволили 
предсказать такие параметры, как пиковое значение тока и длина импульса  
в пределах погрешности измерительного оборудования.

Также стоит отметить, что отечественная среда моделирования SimInTech  
не уступает пакету программ MatLab по точности и скорости моделирования,  
а в каких-то моментах, например, по удобству интерфейса и наличию русскоязыч-
ной версии, имеет явные преимущества.

Все эти результаты вылились в разработку программы для ЭВМ «Программа 
для автоматической нормировки импульса тока по величине заряда батареи 
конденсаторов», которая может быть использована студентами, аспирантами и 
научными сотрудниками, занимающимися экспериментальными исследованиями 
в области физики конденсированного состояния, в частности в исследовании 
электропластичности.
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