Preview

Vestnik of North-Eastern Federal University

Advanced search

Band gap controlling of single-layer graphene doped with nitrogen atoms

https://doi.org/10.25587/w7651-3959-5072-i

Abstract

Ways to increase the electrical conductivity of graphene and purposefully change their electrical properties are being actively looked for in the world. Substitutional doping is suggested to be the most effective method for modifying the electronic properties of graphene. Among various dopant atoms, nitrogen (N) atoms have gained significant research attention being the nearest neighbors to carbon (C) that provide a strong probability of entering the graphene lattice. The n-type graphene sheets produced by N-doping could be employed for fabrication of complementary devices in future graphene-based electronic circuits. In the framework of a density functional theory, an ab initio calculation of a band structure of single-layer graphene doped by nitrogen atoms was carried out. It is established that structural and electronic properties of such systems are strongly influenced by a dopant concentration and its location in a crystal lattice of graphene. Effects of doping of the graphene monolayer on its electronic spectrum are studied. These results indicate a possibility to regulate a band gap width by an appropriate choice of the dopant concentration and its location in the crystal lattice of grapheme.

About the Authors

E. P. Sharin
M.K. Ammosov North-Eastern Federal University
Russian Federation


K. V. Evseev
M.K. Ammosov North-Eastern Federal University
Russian Federation


References

1. Geim A. K., Novoselov K. S. The Rise of Graphene //Nature Material. - 2007. - V. 6, №3.- Pp.183-191.

2. Morozov S. V., Novoselov K. S., Katsnelson M. I., Schedin F., Elias D. C., Jaszczak J. A., Geim A. Synthesis and Characterization of Mass Produced High Quality Few Layered Graphene Sheets via a Chemical Method//Phys. Rev. Lett. - 2008. - V. 100, №3. - Pp. 016602-016606.

3. Lee C., Wei X., Li Q., Carpick R., Kysar J., Hone J. Superior thermal conductivity of single-layer graphene // Nano Lett. - 2008. - V. 8, №3. Pp. 902-907.

4. Balandin A. A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C. N. Chemistry and association of vanadium compounds in heavy oil and bitumen,and implications for their selective removal // Energy Fuels. - 2010. - V. 24. - Pp. 2795-2808.

5. Berger C., Song Z., Li T., Li X., Ogbazghi A. Y., Feng R., Dai Z., Marchenkov A. N., Conrad E. H., First P. N., de Heerl W. A. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics // J. Phys. Chem. B. - 2004. - V. 108, № 52. - 19912-19916.

6. Ahlgren E.H., Kotakoski J., Krasheninnikov A.V. Atomistic simulations of the implantation of low energy boron and nitrogen ions into graphene // Phys. Rev. B. - 2011. - V. 83, № 115. - Pp. 424-431.

7. Sun Z., Yan Z., Yao J., Beitler E., Zhu Y., Tour J.M. Growth of graphene from solid carbon sources // Nature. - 2010. - V.468. - Pp. 549-552.

8. Jin Z., Yao J., Kittrell C., Tour J.M. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets // ACS Nano. - 2011. - V.5. - Pp. 4112-4117.

9. Lin Y. C., Lin C. Y., Chiu P.W. Controllable graphene N-doping with ammonia plasma // Appl. Phys. Lett. - 2010. - V. 96, № 133. - P. 133110

10. Usachov D., Vilkov O., Gruneis A., Haberer D., Fedorov A., Adamchuk V. K., , Preobrajenski A. B., Dudin P., Barinov A., et al. Nitrogen-doped graphene: Efficient growth, structure, and electronic properties // Nano Lett. - 2011. - V. 11. - Pp. 5401-5407.

11. Usachov D. Y., Fedorov A. V., Vilkov O. Y., Senkovskiy B. V., Adamchuk V. K., Andryushechkin B. V., Vyalikh D. V. Synthesis and Electronic Structure of Nitrogen-Doped Graphene // Physics of Solid State. - 2013. - V. 55. - Pp. 1125-1131.

12. Lin Y.-M., Dimitrakopoulos C., Jenkins K. A., Farmer D. B., Chiu H.-Y., Grill A., Avouris P. 100-GHz transistors from wafer-scale epitaxial graphene // Science. - 2010. - V. 327. - P. 662.

13. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., et al. Electric field effect in atomically thin carbon films // Science. - 2004. - V. 306. - Pp. 666-669.

14. Laref A., Ahmed A., Bin-Omran S., Luo S. J. First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes //Carbon. - 2015. - V. 81. - Pp. 179-192.

15. Rani P., Jindal V. K. Designing band gap of graphene by B and N dopant atoms //RSC Adv. - 2013. - V. 3. - Pp. 802-812.

16. Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. - 1996. - V. 77, № 18. - Pp. 3865-3868.

17. Monkhorst H. J., Pack J. D. Special points for brillouin-zone integrations // Phys. Rev. B. - 1976. - V. 13. - Pp. 5188-5192.

18. Varghese S. S., Swaminathan S., Singh K. K., Mittal V. Energetic Stabilities, Structural and Electronic Properties of Monolayer Graphene Doped with Boron and Nitrogen Atoms // Electronics. - 2016. - V. 5. - Pp. 91-127.

19. Wang Z., Qin S., Wang C. Electronic and magnetic properties of single-layer graphene doped by nitrogen atoms //Eur. Phys. J. B. - 2014. - V. 87. - Pp. 5401-5407.


Review

For citations:


Sharin E.P., Evseev K.V. Band gap controlling of single-layer graphene doped with nitrogen atoms. Vestnik of North-Eastern Federal University. 2020;(5):38-45. (In Russ.) https://doi.org/10.25587/w7651-3959-5072-i

Views: 85


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)