Preview

Vestnik of North-Eastern Federal University

Advanced search

Development and testing of the installation for studying the laboratory analog of ball lightning

https://doi.org/10.25587/SVFU.2020.80.6.002

Abstract

A spherical plasmoid is the result of a unique type of pulsed «Gatchina» discharge, in which a plasma clot grows out of the discharge and separates from the central electrode and its glow lasts in free flight for several hundred milliseconds without an external electrical power source before dissipating. To date, there is no detailed understanding of the processes that determine the key stages in the development of a pulsed «Gatchina» discharge and are necessary to establish the mechanisms of formation of long-lived spherical plasmoids, so experimental studies are urgent. A setup has been created to study this type of discharge. The main units of the installation are described, including: a reactor, high-voltage equipment, current and voltage sensors, and a gas spark gap. In addition, a number of experiments are described and a set of preliminary data are included that provide a basis for further research: the discharge current and voltage across the capacitor, the shape and color of the resulting plasmoids, the ejection of particles from the plasmoid and the bursts of balls inside the plasmoid. The following important results were obtained: formations of spherical and toroidal bulk plasmoids were demonstrated; observation of the color of plasmoids showed that they change color during their life during propagation (yellow, red, purple, green colors were observed); the emission of brightly glowing small particles from the plasmoid was recorded in an autonomous mode; it is shown that round glowing balls flare up inside the plasmoid during its life. As a result of the experiments, no high variability from discharge to discharge was observed. When the discharge is realized, plasmoids with similar basic characteristics (size, lifetime, current strength, flight speed, etc.) are stably reproduced with a spread of up to 20% of the «Gatchina» one.

About the Authors

D. C. Kim
M.K. Ammosov North-Eastern Federal University
Russian Federation


A. S. Semenov
M.K. Ammosov North-Eastern Federal University
Russian Federation


Y. V. Bebikhov
M.K. Ammosov North-Eastern Federal University
Russian Federation


V. A. Efimov
Saint Petersburg State University, Academic Gymnasium n.a. D.K. Faddeev
Russian Federation


V. M. Spiridonov
M.K. Ammosov North-Eastern Federal University
Russian Federation


P. S. Tatarinov
M.K. Ammosov North-Eastern Federal University
Russian Federation


References

1. Cen J., Yuan P., Xue S. Observation of the Optical and Spectral Characteristics of Ball Lightning // Physical Review Letters. - 2014. - V. 112. - Is. 3. - No. 035001. DOI: 10.1103/PhysRevLett.112.035001

2. Nikola Tesla. Colorado Springs Notes: 1899-1900 / Ed. A.S. Marincic. - Belgrade: Yugoslavia: Nolita, 1978.

3. The engines on the corona discharge. IYPT2019. 1. Invent Yourself [Электронный ресурс]. - Режим доступа: https://youtu.be/xtqPVszxKFg, свободный - (20.09.2020)

4. Егоров А. И., Степанов С. И. Долгоживущие плазмоиды - аналоги шаровой молнии, возникающие во влажном воздухе // Журнал технической физики. - 2002. - Т. 72. - № 12. - С. 102-104. (Переводная версия: Egorov A.I., Stepanov S.I. Long-lived plasmoids produced in humid air as analogues of ball lightning // Technical Physics. - 2002. - V. 47. - Is. 12. - P. 1584-1586. DOI: 10.1134/1.1529952).

5. Sakawa Y., Sugiyama K., Tanabe T., More R. Fireball Generation in a Water Discharge // Plasma and Fusion Research. - 2006. - V. 1. - No. 039. DOI: 10.1585/pfr.1.039

6. Hayashi N., Satomi H., Mohri T., Kajiwara T., Tanabe T. General nature of luminous body transition produced by pulsed discharge on an electrolyte solution in the atmosphere // IEEJ Transactions on Electrical and Electronic Engineering. - 2009. - V. 4. - Is. 5. - P. 674-676. DOI: 10.1002/tee.20460

7. Versteegh A., Behringer K., Fantz U., Fussmann G., Jüttner B., Noack S. Long-living plasmoids from an atmospheric water discharge // Plasma Sources Science and Technology. - 2008. - V. 17. - Is. 2. - No. 024014. DOI: 10.1088/0963-0252/17/2/024014

8. Khorunzhiy M. O., Kuleshov A. N., Yefimov B. P. Long-living plasma excited by electric discharge in water // IEEE Transactions on Plasma Science. - 2011. - V. 39. - Is. 11-1. - P. 2648-2649. DOI: 10.1109/TPS.2011.2166408

9. Fantz U., Kalafat S., Friedl R., Briefi S. Generation of an atmospheric plasmoid from a water discharge: An analysis of the dissipated energy // Journal of Applied Physics. - 2013. - V. 114. - Is. 4. - No. 043302. DOI: 10.1063/1.4816311

10. Friday D. M., Broughton P. B., Lee T. A., Schutz G. A., Betz J. N., Lindsay C. M. Further insight into the nature of ball-lightning-like atmospheric pressure plasmoids // Journal of Physical Chemistry A. - 2013. - V. 117. - Is. 39. - P. 9931-9940. DOI: 10.1021/jp400001y

11. Dubowsky S. E., Friday D. M., Peters K. C., Zhao Z., Perry R. H., McCall B. J. Mass spectrometry of atmospheric-pressure ball plasmoids // International Journal of Mass Spectrometry. - 2015. - V. 376. - P. 39-45. DOI: 10.1016/j.ijms.2014.11.011

12. Stephan K. D., Dumas S., Komala-Noor L., McMinn J. Initiation, growth and plasma characteristics of ‘Gatchina’ water plasmoids // Plasma Sources Science and Technology. - 2013. - V. 22. - Is. 2. - No. 025018. DOI: 10.1088/0963-0252/22/2/025018

13. Dubowsky S. E., Deutsch B., Bhargava R., McCall B.J. Infrared emission spectroscopy of atmospheric-pressure ball plasmoids // Journal of Molecular Spectroscopy. - 2016. - V. 322. - P. 1-8. DOI: 10.1016/j.jms.2016.02.005

14. Stelmashuk V., Hoffer P. Experimental Study of a Long-Living Plasmoid Using High-Speed Filming // IEEE Transactions on Plasma Science. - 2017. - V. 45. - Is. 12. - P. 3160-3165. DOI: 10.1109/TPS.2017.2770224

15. Шабанов Г. Д. О возможности создания природной шаровой молнии импульсным разрядом нового вида в лабораторных условиях // Успехи физических наук. - 2019. - Т. 189. - № 1. - С. 95-111. (Переводная версия: Shabanov G.D. On the possibility of making natural ball lightning using a new pulse discharge type in the laboratory // Physics-Uspekhi. - 2019. - V. 62. - Is. 1. - P. 92-107. DOI: 10.3367/UFNr.2018.03.038318).

16. Donoso J., Trueba J. L., Ranada A. F. The Riddle of Ball Lightning: A Review // TheScientificWorldJournal. - 2006. - V. 6. - P. 254-278. DOI: 10.1100/tsw.2006.48

17. Shmatov M. L., Stephan K. D. Advances in ball lightning research // Journal of Atmospheric and Solar-Terrestrial Physics. - 2019. - V. 195. - No. 105115. DOI: 10.1016/j.jastp.2019.105115

18. Yousuo Z. Conditions for producing and maintaining plasma ball lightning in the atmosphere // Advances in Atmospheric Sciences. - 1989. - V. 6. - Is. 1. - P. 62-74. DOI: 10.1007/BF02656918

19. Abrahamson J. Ball lightning from atmospheric discharges via metal nanosphere oxidation: From soils, wood or metals // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. - 2002. - V. 360. - Is. 1790. - P. 61-88. DOI: 10.1098/rsta.2001.0919

20. Abrahamson J., Dinniss J. Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil // Nature. - 2000. - V. 403. - Is. 6769. - P. 519-521. DOI: 10.1038/35000525

21. Stephan K. D., Massey N. Burning molten metallic spheres: One class of ball lightning? // Journal of Atmospheric and Solar-Terrestrial Physics. - 2008. - V. 70. - Is. 11-12. - P. 1589-1596. DOI: 10.1016/j.jastp.2008.05.014


Review

For citations:


Kim D.C., Semenov A.S., Bebikhov Y.V., Efimov V.A., Spiridonov V.M., Tatarinov P.S. Development and testing of the installation for studying the laboratory analog of ball lightning. Vestnik of North-Eastern Federal University. 2020;(6):34-47. (In Russ.) https://doi.org/10.25587/SVFU.2020.80.6.002

Views: 188


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)