Preview

Vestnik of North-Eastern Federal University

Advanced search

Modeling the hydrothermodynamics of cumulus clouds on natural and alternative condensation nuclei in the Earth's atmosphere

https://doi.org/10.25587/SVFU.2020.80.6.003

Abstract

The process of evaporation-condensation of natural cumulus clouds on natural and alternative condensation nuclei is investigated. Natural condensation nuclei mean atmospheric aerosols, and alternative ones - hydroclusters with an ionic center. Atmospheric aerosols are finely dispersed particles of dust or liquid matter suspended in the atmosphere or gaseous medium. Hydroclusters with an ionic center are charged particles formed by interaction with cosmic radiation. In contrast to natural condensation nuclei located at an altitude of ≈1 km from the Earth, alternative ones prevail at heights of ≈2 km and above. It has been experimentally confirmed that at this level there is a fourfold supersaturation of water vapor. Based on the above facts, approximate analytical modeling of the evaporation-condensation of natural cumulus clouds on natural and alternative condensation nuclei is carried out. Cumulus clouds are considered as expanding, immiscible spherical masses, consisting of dry air, water vapor, and condensation nuclei. The rise of the cloud occurs due to its heating during condensation and subsequent adiabatic expansion. The rate of rising of cumulus clouds is determined depending on the degree of supersaturation of wet masses and the properties of droplet nuclei in the Earth's atmosphere. In particular, it has been shown that the speed of ascent of the cloud, depending on the properties of the nuclei, has an almost fourfold difference. Numerical modeling of the heat balance of a cloud for natural single and alternative fourfold supersaturations of water vapor at cloud radii of 500, 1000, and 1500 m is carried out. The results of theoretical calculations show that vapor evaporation-condensation on alternative cores can lead to a sharp, avalanche-like formation of thunderstorm clouds. It is shown that the release of heat during this process, depending on the supersaturation temperature, is several times higher than the amount of heat released during condensation on natural nuclei. Thus, the work shows that alternative condensation nuclei can be the source of thunderclouds.

About the Author

G. S. Pavlov
Federal State Budgetary Scientific Institution Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences
Russian Federation


References

1. Levine J. Spherical vortex theory of bubble-like motion in cumulus clouds // J. Meteor. - 1959. - Vol.16. - pp. 653-662.

2. Morrison H. An Analytic Description of the Structure and Evolution of Growing Deep Cumulus Updrafts // J. Atmos. Sci. - 2017. - Vol. 74. - pp. 809-834.

3. Понамарев Ю. Н., Климкин А. В., Козлов А. С., Колосов В. В., Крымский Г. Ф., Куряк А. Н., Малышкин С. Б., Петров А. К. Исследования конденсации пересыщеного водяного пара при ионизации атмосферы и сопутствующего характеристического ик-излучения // Солнечно-земная физика. - 2012. - Вып. 21. - С. 58-61.

4. Русанов А. И. К термодинамике нуклеации на заряженных центрах // Докл. АН СССР. - 1978. - Т. 238. - № 4. - С. 831-834.

5. Боярчук К. А. Оценка концентрации комплексных отрицательных ионов при радиоактивном загрязнении тропосферы // Журнал технической физики. - 1999. - Т. 69. - вып. 3. - С. 74-56.

6. Дас Гупта Η. Η., Гош С. К. Камера Вильсона и ее применение в физике // УФН. - 1947. - Т. 31. - Вып. 4. - С. 491-584.

7. Christina J. Williamson, et. al. A large source of cloud condensation nuclei from new particle formation in the tropics // Nature, 2019. - Vol. 574. - pp. 399-403.

8. Moser D., Lasher-Trapp S. The Influence of Successive Thermals on Entrainment and Dilution in a Simulated Cumulus Congestus // J. Atmos. Sci., 2017. - Vol. 74. - pp. 375-392.

9. Hirsikko A. et. al. Atmospheric ions and nucleation: a review of observations // Atmos. Chem. Phys., 2011. - Vol. 11. - pp. 767-798.

10. Крымский Г. Ф., Павлов Г. С. Электрическая модель конденсации водяного кластера // Докл. АН. - 2008. - Т. 420. - C. 750-751.

11. Damiani R., Vali G., Haimov S. The Structure of Thermals in Cumulus from Airborne Dual- Doppler Radar Observations // J. Atmos. Sci., 2006. - Vol. 63 (5): 1432-1450.

12. DiGangi E. A. et. al. An overview of the 29 May 2012 Kingfisher supercell during DC3 // J. Geophys. Res. Atmos., 2016. - Vol. 121. - pp. 14316-14343.

13. Крымский Г. Ф. Диссипация энергии в среде с турбулентной вязкостью и вихри Хилла // Докл. АН. - 2019. - Т. 486. - C. 673-674.


Review

For citations:


Pavlov G.S. Modeling the hydrothermodynamics of cumulus clouds on natural and alternative condensation nuclei in the Earth's atmosphere. Vestnik of North-Eastern Federal University. 2020;(6):48-56. (In Russ.) https://doi.org/10.25587/SVFU.2020.80.6.003

Views: 102


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)