Preview

Vestnik of North-Eastern Federal University

Advanced search

Relativistic matrix elements of the electrostatic interaction energy operator in the case of two subshells of equivalent electrons

https://doi.org/10.25587/y4616-6441-2329-m

Abstract

The article is devoted to obtaining the relativistic matrix elements of the energy operator of electrostatic interaction of electrons. The case of configuration-diagonal matrix elements for atoms (ions) with two unfilled subshells of equivalent electrons is considered. The function of bound moments of the state of atoms (ions) with two unfilled subshells of equivalent electrons is obtained by the method of irreducible tensor operators in the representation of secondary quantization. In this case, the state function of one N subshell of equivalent electrons is obtained by coupling the N moments (ranks) of identical electron creation operators. The state function of two subshells of equivalent electrons is obtained by coupling the resulting moments (ranks) N1(N2) of the electron creation operators corresponding to the first (second) subshell of equivalent electrons. The matrix elements of the electrostatic interaction energy operator in the case of two subshells take into account the interaction energies of electrons inside the subshells and direct and exchange interactions between electrons of different subshells, which leads to the need for slope coefficients and radial integrals that depend on both angular and radial quantum numbers. Radial integrals represent linear combinations of Slater-type integrals but depend on the larger and smaller components of the Dirac-type relativistic wave functions. Recursive relations connecting two subshell configurations with different numbers of electrons in subshells are obtained for direct and exchange angular coefficients.

About the Authors

I. S. Kychkin
M.K. Ammosov North-Eastern Federal University
Russian Federation


V. I. Sivtsev
M.K. Ammosov North-Eastern Federal University
Russian Federation


References

1. Safronova, M. S. Atomic properties of actinide ions with particle-hole configurations / M. S. Safronova, U. I. Safronova, M. G. Kozlov // Phys. Rev. A. - 2018. - vol. 97. - № 012511. - pp. 1-5.

2. Ахиезер, А. И. Квантовая электродинамика / А. И. Ахиезер, В. Б. Берестецкий. - Москва : Наука, 1981 - 428 с.

3. Берестецкий, В. Б. Релятивистская квантовая теория: ч.1. / В. Б. Берестецкий, Б. М. Лифшиц, Л. П. Питаевский. - Москва : Наука, 1968. - 480 с.

4. Ermler Walter, C. jj-Coupling-based atomic self-consistent-field calculations with relativistic effective core potentials and two-component spinors // Computer Physics Communications. - 2018. - vol. 229. - p. 182-198.

5. Safronova, U. I. Atomic data for dielectronic satellite lines and dielectronic recombination into Ne5+ / U. I. Safronova, R. Mancini // Atomic Data and Nuclear Data Tables. - 2009. - Vol. 95. - p. 54-95.

6. Amaro, P. Relativistic evaluation of the two-photon decay of the metastable 1s22s2p3P0 state in berylliumlike ions with an effective-potential model / P. Amaro, F. Fratini, L. Safari, J. Machado, M. Guerra, P. Indelicato, J. P. Santos // Phys. Rev. A. - 2016. - Vol. 93. - № 032502.

7. Aguiar, J. C. An examination of the consistency of the published levels of the p2, p3 and p4 and isoelectronic sequences using jj-relativistic expressions / J. C. Aguiar, H. O. Di Rocco. // J. Quan. Spectr. & Radiative Transfer. - 2014. - Vol. 149. - p. 1-7.

8. Savukov, I. Relativistic Cl+ linearized coupled-cluster calculations of U2+ energies, g-factors, transition rates and lifetimes. / I. Savukov, U. I. Safronova, M. S. Safronova // Phys. Rev. A. - 2015. - Vol. A92. - № 052516.

9. Safronova, U. I. Relativistic many-body calculation of energies, multipole transition rates, and lifetimes in tungsten ions. / U. I. Safronova, M. S. Safronova, N. Nakamura // Phys. Rev. A. - 2017. - Vol. A95. - № 042510.

10. Aggarwal, K. M. Energy levels, radiative rates and electron impact excitation rates for transitions in Al X. / K. M. Aggarwal, F. P. Keenan // MNRAS. - 2014. - Vol. 438. - p. 1223-1232.

11. Jursenas, R. Coupled tensorial forms of the second-order effective Hamiltonian for open-subshell atoms in jj-coupling. / R. Jursenas, G. Merkelis // At. Data Nucl. Data Tables. - 2011. - Vol. 97. - pp. 23-35.

12. Кычкин, И. С. Основы релятивистской теории многоэлектронных атомов и ионов. - Москва : Физматлит, 1994. - 273 с.

13. Собельман, И. И. Введение в теорию атомных спектров. - Москва : Наука, 1977. - 320 с.

14. Кычкин, И. С. Релятивистские матричные элементы оператора энергии электростатического взаимодействия в случае одной подоболчки эквивалентных электронов. / И. С. Кычкин, В. И. Сивцев // Вестник СВФУ. - 2018. - № 6. - с. 86-93.

15. Кычкин, И. С. Подоболочка эквивалентных электронов. Электростатическое взаимодействие. / И. С. Кычкин, В. И. Сивцев // Вестник СВФУ. - 2020. - № 2. - с. 32-40.

16. Кычкин, И. С. Единичный тензорный оператор в j-представлении / И. С. Кычкин, В. И. Сивцев // Вестник СВФУ. - 2019. - № 5. - с. 44-56.

17. Кычкин, И. С. Двухэлектронный скалярный в j-пространстве единичный оператор / И. С. Кычкин, В. И. Сивцев // Вестник СВФУ. - 2019. - № 6. - с. 37-45.


Review

For citations:


Kychkin I.S., Sivtsev V.I. Relativistic matrix elements of the electrostatic interaction energy operator in the case of two subshells of equivalent electrons. Vestnik of North-Eastern Federal University. 2021;(2):28-38. (In Russ.) https://doi.org/10.25587/y4616-6441-2329-m

Views: 86


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)