Preview

Vestnik of North-Eastern Federal University

Advanced search

Time course of semidiurnal variations in the intensity of cosmic rays according to the data of ground-based detectors for 1971-2021

https://doi.org/10.25587/e8425-8852-9054-g

Abstract

Galactic cosmic rays (CR) registered by ground-based detectors are subjected to the main influencing factor along their propagation path - the solar wind, which fills the entire heliosphere. Modulation of CR by the heliosphere leads to the formation of their anisotropic spatial-angular distribution in interplanetary space. In the data of ground-based detectors, such anisotropy manifests itself, due to the rotation of the Earth around its axis, in the form of periodic daily fluctuations in the registered intensity. The parameters of such fluctuations are determined by the state of solar activity and the corresponding changes in the large-scale structure. As a rule, the amplitude of such oscillations is small and amounts to only hundredths of the total flux of CR. However, the anisotropy of CR is an important source of information about the properties and structure of the entire heliosphere. The current picture of modulation of CR in the heliosphere suggests the existence of their excess from directions across the lines of force of the interplanetary magnetic field. Experimental data confirm this picture and, on average, the maximum of fluctuations is observed within 3 and 15 hours local time. Considering that the direction of the field lines remains almost unchanged, it is fair to expect that the aforementioned maximum time should also remain unchanged. However, long-term observations have shown that, depending on the level of solar activity, the time of the maximum can significantly shift to an earlier time. This paper is an attempt to explain the observed amplitude-phase oscillations of semidiurnal variations in the intensity of cosmic rays. Based on current ideas about the interaction of CR with the Earth's atmosphere and the geomagnetic field, calculations of the expected semidiurnal variations in the intensity of CR recorded by world networks of muon detectors and neutron monitors have been carried out. Comparison of the calculated and observational data has shown that the observed shift can be explained by the dynamics of the energy spectrum of semidiurnal CR variations. The result obtained confirms and supplements the results obtained earlier by other authors, and it can also be considered as an indication for the further development of the theory of heliospheric CR modulation.

About the Authors

Petr Yurievich Gololobov
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy of Scinces
Russian Federation


Gavriil Sergeevich Pavlov
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy of Scinces
Russian Federation


References

1. King, J. H. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data / J. H. King, N. E. Papitashvili // Journal of Geophysical Research. - 2005. - V. 110. - № A02104. - P. 1-8.

2. Subramanian, G. Consequences of the distribution of galactic cosmic-ray density in the solar system / G. Subramanian, V. Sarabhai // The Astrophysical Journal. - 1967. - V. 149. - P. 417-428. doi: 10.1086/149266.

3. Quenby, J. J. The second harmonic of the cosmic ray daily variation / J. J. Quenby, B. Lietti // Planetary and Space Science. - 1968. - V. 16. - P. 1209-1219. doi: 10.1016/0032-0633(68)90027-5.

4. Sarabhai, V. Anisotropy of galactic cosmic rays and the interplanetary magnetic field / V. Sarabhai, G. L. Pai, M. Wada // Nature. - 1965. - V. 206. - P. 703-704. doi: 10.1038/206703a0.

5. Sarabhai, V. Galactic cosmic rays in the solar system / V. Sarabhai, G. Subramanian // The Astrophysical Journal. - 1966. - V. 145. - P. 206-214.

6. Nagashima, K. Three-dimensional cosmic ray anisotropy in interplanetary space. Part III - Origin of Cosmic Ray Solar Semidiurnal Variation / K. Nagashima, H. Ueno, K. Fujimoto [et al] // Report of ionosphere and space research in Japan. - 1972. - V. 26. - P. 1-30.

7. Nagashima, K. Three-dimensional cosmic ray anisotropy in interplanetary space. Part IV - Origin of Solar Semidiurnal Variation / K. Nagashima, K. Fujimoto, Z. Fujii [et al.] // Report of ionosphere and space research in Japan. - 1972. - V. 26. - P. 31-68.

8. Krivoshapkin, P. A. The second spherical harmonics in the distribution of cosmic rays / P. A. Krivoshapkin, G. F. Krymsky, A. I. Kuzmin [et al.] // Acta Physica Academiae Scientiarum Hungaricae. - 1970. - V. 29. - P. 147-151.

9. Дорман, Л. И. Вариации космических лучей: монография / Л. И. Дорман. - Москва : Гостехиздат. - 1957. - 492 С.

10. Nuntiyakul, W. Latitude survey investigation of galactic cosmic ray solar modulation during 1994-2007 / W. Nuntiyakul, P. Evenson, D. Ruffolo [et al.] // The Astrophysical Journal. - 2014. - V. 795:11. - Issue 5. - 13 pp. doi:10.1088/0004-637X/795/1/11.

11. Крымский, Г. Ф. Модель генерации мюонов в земной атмосфере / Г. Ф. Крымский, П. А. Кривошапкин, В. Г. Григорьев // Геомагнетизм и аэрономия. 2011. - Т. 51. - №5. - С. 716-720.

12. Алексаньян, Т. М. Экспериментальные исследования геомагнитных эффектов в космических лучах и спектр эффекта возрастания перед магнитными бурями / Т. М. Алексаньян, И. В. Дорман, Л. И. Дорман [др.] // Известия АН СССР. Серия физическая, журнал. - 1982. - Т. 46. - №9. - С. 1689-1691.

13. Fujimoto, K. Coupling coefficients of the cosmic ray variations for meson telescopes / K. Fujimoto, S. Yasue, I. Kondo, K. Nagashima // Proceedings of 15th International Cosmic Ray Conference. Budapest, Bulgaria. - 1977. - V. 4. - P. 321-325.

14. Murakami, K. Response functions for cosmic-ray muons at various depths underground / K. Murakami, K. Nagashima, S. Sagisaka [et al.] // Il Nuovo Cimento. - 1979. - V. 2 C. - No. 5. - P. 635-651.

15. Дорман, Л. И. Космические лучи в магнитном поле Земли : монография / Л. И. Дорман В. С. Смирнов, М. И. Тясто. - Москва : Наука. - 1971. - 400 С.

16. Smart, D. F. Magnetospheric models and trajectory computations / D. F. Smart, M. A. Shea, E. O. Flückiger // Space Science Reviews. - 2000. - V. 93. - P. 305-333. doi: 10.1023/A:1026556831199.

17. Крымский, Г. Ф. Распределение космических лучей и приемные векторы детекторов. I / Г. Ф. Крымский, А. И. Кузьмин, Н. П. Чирков [и др.] // Геомагнетизм и аэрономия. - 1966. - Т. 6. - № 3. - С. 991-996.

18. Крымский, Г. Ф. Распределение космических лучей и приемные векторы детекторов. II / А. И. Кузьмин, Н. П. Чирков, П. А. Кривошапкин [и др.] // Геомагнетизм и аэрономия. - 1967. - Т. 7. - № 1. - С. 11-15.

19. Smith, C. W. Solar cycle variations of the interplanetary magnetic field spiral / C. W. Smith, J. W. Bieber // The Astrophysical Journal. - 1991. - V. 370. - P. 435-441.

20. Космические лучи и солнечный ветер: монография / Г. Ф. Крымский А. И. Кузьмин, П. А. Кривошапкин [и др.] - Новосибирск : Наука. - 1981. - 224 с.

21. Zusmanovich, A. G. Energy Spectrum of the Semidiurnal Variation of Cosmic Rays / A. G. Zusmanovich, L. A. Mirkin // Proc. 18Th ICRC. - 1983. - P. 333-336.

22. Ahluwalia, H. S. Cosmic ray solar semidiurnal anisotropy. 1. Treatment of experimental data / H. S. Ahluwalia, M. M. Fikani // Journal of Geophysical Research. - 1996. - V. 101. - No. A5. - P. 11075-11085.


Review

For citations:


Gololobov P.Yu., Pavlov G.S. Time course of semidiurnal variations in the intensity of cosmic rays according to the data of ground-based detectors for 1971-2021. Vestnik of North-Eastern Federal University. 2021;(6):14-23. (In Russ.) https://doi.org/10.25587/e8425-8852-9054-g

Views: 72


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)