Preview

Vestnik of North-Eastern Federal University

Advanced search

Catalytic Clearing of GAS Emissions from CO2

https://doi.org/10.25587/SVFU.2019.69.25522

Abstract

The processes of combustion of hydrocarbon systems in the engines of vehicles and furnaces lead to a sharp increase in CO2 in the atmosphere. Combustion of oil, gas and coal is accompanied by the release of up to 5 billion tons in the year of carbon dioxide. With decreasing a forest area we can see increase in the concentration of CO2 in the atmosphere (from 0.03 to 0.041%). Therefore, the problem of cleaning off gases from carbon dioxide is one of the most actual problems today. The disadvantages of the currently existing methods of utilization of carbon dioxide are insufficiently high degree of purification of waste gases, high operating costs in their implementation, as well as the possibility of their implementation only at high concentrations of pollutants in the off-gases. The aim of the study is to determine the optimal parameters for the catalytic purification of waste gases from carbon dioxide in solutions of trifluoroacetic acid. The stated task is achieved by the described method of flue gas cleaning, including pumping the gas flow through a container filled with 5.0-10.0 M aqueous solution of trifluoroacetic acid saturated with oxygen, separating the formed by-products, recycling the latter, recovering the spent solution of trifluoroacetic acid by saturation with oxygen and recirculation of the regenerated solution for pumping. The absorption capacities of solutions of trifluoroacetic acid were studied as a function of solution concentrations and pH values. The absorption of carbon dioxide in solutions of trifluoroacetic acid was investigated at room temperature and atmospheric pressure. TFA was preliminarily distilled (boiling temperature 72.4 °C) and purity was monitored by UV spectroscopy. Unreacted CO2 at the outlet from the system was absorbed in the removable traps by NaOH solution, the pH of which was continuously monitored with a glass electrode. The amount of hydrogen carbonate and sodium carbonate formed by the interaction of CO2 with NaOH solution was determined by potentiometric titration. The amount of CO2 reacted was calculated from the titration results during the passage of the off-gas through the trap. It has been shown that flue gas cleaning from carbon dioxide using solutions of trifluoroacetic acid as a catalyst is carried out at room temperature and atmospheric pressure with an efficiency of 100%.

About the Authors

M. S. Ivanova
M.K. Ammosov North-Eastern Federal University
Russian Federation

Ivanova Maria Sergeyevna – PhD, Lecturer of the Department oil and gas Industry, Polytechnic Institute, the branch of the North-Eastern Federal University named after M.K. Ammosov

Mirny



M. V. Vishnetskaya
Gubkin Russian State University of Oil and Gas
Russian Federation

Vishnetskaya Marina Viktorovna – doctor of chemical sciences, professor, professor of the department "Industrial ecology"

Moskow



K. O. Tomskiy
M.K. Ammosov North-Eastern Federal University
Russian Federation

Tomskii Kirill Olegovich – PhD, Lecturer of the Department oil and gas Industry, Polytechnic Institute, the branch of the North-Eastern Federal University named after M.K. Ammosov

Mirny



References

1. Abrosimov A. A. Ehkologiya pererabotki uglevodorodnyh sistem. – M.: Himiya, 2002. – 608 s.

2. Laptev A. G., Farahov M. I. Gidromekhanicheskie processy v neftekhimii i ehnergetike: Posobie k raschetu apparatov. – Kazan’: Izd-vo Kazansk. gos. un-ta, 2008. – 729 s.

3. Yakimova I. Yu., Savickaya Yu. V., Vishneckaya M. V. Kataliticheskaya ochistka gazovyh vybrosov ot SO2 // Tekhnologii nefti i gaza. – 2008. – №2. – S. 56-58.

4. Vishneckaya M. V., Ivanova M. S., Solkan V. N., Zhidomirov G. M., Mel’nikov M. Ya. Aktivaciya molekulyarnogo kisloroda v triftoruksusnoj kislote // ZHurnal fizicheskoj himii. – 2012. – T. 86. – №5. – S. 889-891.

5. Clark F. R. S., Norman R. O. C., Thomas C. B., Wilson J. S. Reactions of Palladium (II) with organic compounds. Part II. Oxidation of some Benzenoid compounds in trifluoroacetic acid // J. Chem. Soc. Perkin Trans. I. – 1974. – R. 1289-1294.

6. Luo C, Dong W, GuY. Theory-guided access to efficient photodegradation of the simplest perfluorocarboxylic acid: trifluoroacetic acid // Chemosphere. – 2017. – V.181. – P. 26-36.

7. Vishneckaya M. V., Ivanova M. S., Svichkarev O. M., Budynina E. M., Mel’nikov M. YA. Prevrashcheniya CO2 v rastvorah triftoruksusnoj kisloty // ZHurnal fizicheskoj himii. – 2013. – T. 87. – №5. – S. 742-744.

8. Vishneckaya M. V., Mel’nikov M. YA. Osobennosti prevrashcheniya organicheskih i neorganicheskih veshchestv v triftoruksusnoj kislote // ZHurnal fizicheskoj himii. – 2016. – T. 90. – №9. – S. 1434-1436.

9. Macuo M., Otosi S. Soedineniya ftora. – M.: Mir, 1990.

10. Aslanov L. A., Zaharov M. A., Abramycheva N. L. Ionnye zhidkosti v ryadu rastvoritelej. – M.: MGU, 2005. – 272 s.

11. Koshi J. K. Formation and oxidation of alkyl radicals by cobalt (III) complexes // J. Am. Chem. Soc. – 1968. – V. 90. – № 19. – P. 5196-5207.

12. Gekhman A. E., Stolyarov I. P., Ershova N. V., Moiseeva N. I., Moiseev I. I. Gidroperoksidnoe okislenie trudnookislyaemyh substratov: besprecedentnyj razryv svyazi S-S v alkanah, okislenie molekulyarnogo azota // Kinetika i kataliz. – 2004. – T. 45. – № 1. – S. 45-66.

13. Gekhman A. E., Moiseeva N. I., Moiseev I. I. Razlozhenie peroksida vodoroda, kataliziruemoe soedineniyami vanadiya (V): puti obrazovaniya ozona // Izv. Akad. nauk. Seriya himicheskaya. – 1995. – № 4. – S. 605-618.

14. Gekhman A. E., Moiseeva N. I., Moiseev I. I. Peroksokompleksy vanadiya v katalize prevrashchenij peroksida vodoroda v triftoruksusnoj kislote // Koordinac. himiya. – 1992. – T. 18. – S. 3. 12.

15. Gekhman A. E., Moiseeva N. I., Blyumberg EH. A., Moiseev I. I. Obrazovanie O3 pri kataliticheskom razlozhenii N2O2 // Izv. Akad. nauk. Seriya himicheskaya. – 1985. – S. 2653.

16. Hart H., Buehler C. A. Peroxytrifluoroacetic acid-boron fluoride as a source of positive hydroxyl // J. Org. Chem. – 1964. – V. 29. – №8. – P. 2397-2400.

17. Moiseeva N. I., Gekhman A. E., Blyumberg EH. A., Moiseev I. I. Kataliziruemoe vanadiem (+5) okislenie benzola i ego proizvodnyh gidroperoksidami // Kinetika i kataliz. – 1988. – T. 29. – S. 970-974.

18. Buchachenko A. L. Kompleksy molekulyarnogo kisloroda s organicheskimi molekulami // Uspekhi himii. – 1985. – T. 54. – Vyp. 2. – S. 195-212.

19. Sidorenkova I. A., YAkimova I. YU., Vishneckaya M. V., Ponomareva O. A. Sverhkisloty kak katalizatory okislitel’nyh processov // ZHurnal fizicheskoj himii. – 2005. – №8. – S. 1526-1527.

20. Vishneckaya M. V., YAkimova I. YU., Sidorenkova I. A. Sverhkisloty kak katalizatory okisleniya neorganicheskih substratov // ZHurnal fizicheskoj himii. – 2006. – № 2. – S. 236-238.


Review

For citations:


Ivanova M.S., Vishnetskaya M.V., Tomskiy K.O. Catalytic Clearing of GAS Emissions from CO2. Vestnik of North-Eastern Federal University. 2019;(1):24-31. (In Russ.) https://doi.org/10.25587/SVFU.2019.69.25522

Views: 112


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)