Potential for Water Clusters Modeling
https://doi.org/10.25587/SVFU.2019.69.25525
Abstract
Distilled water, with the exception of a small natural ionization, consists of H2O molecules. There is no reason to believe that these molecules, with the exception of small mutual deformations, differ from the H2O molecules in a pair. This is confirmed by the Raman spectra and infrared absorption of water obtained by the works of Rahman and Stillinger. A computer simulation of a cluster of 55 molecules is performed. The representation of electric potential in both the five-center and four-center models implicitly implies the presence of non-electrostatic forces in the molecule. In the absence of such forces, according to the well-known Irnshaw theorem, it would be impossible to have stable molecules. We consider the pressure of supersaturated steam with a change in temperature, based on molecular rotation, only if we assume that the overwhelming number of water molecules has a free orientation without the influence of an external electric field. Molecular clusters, which we will study, are formed by molecules in contact with each other, able to rotate around their center under the action of intermolecular electrostatic forces. To test the suitability of our potential for modeling, the binding energy of a molecule in water and the sticking coefficient of a vapor molecule falling on a water surface will be calculated. These two parameters are also found from the saturation curve as calibration values. Thus, we model virtual intermolecular interactions between water molecules.
About the Authors
G. S. PavlovRussian Federation
PAVLOV Gavriil Sergeevich – Junior Researcher High energy cosmic ray laboratory
Yakutsk
G. F. Krymsky
Russian Federation
KRYMSKY Germogen Felippovich – Academician, Ph.D. (Physics and Mathematics)
Yakutsk
References
1. Krymskij G. F., Pavlov G. S. EHlektricheskaya model' kondensacii vodyanogo klastera // Dokl. AN. – 2008. – T.420. – C. 750-751.
2. Ponomarev YU. N., Klimkin A. V., Kozlov A. S., Kolosov V. V., Krymskij G. F., Kuryak A. N., Malyshkin S. B., Petrov A. K. Issledovaniya kondensacii peresyshchennogo vodyanogo para pri ionizacii atmosfery i soputstvuyushchego harakteristicheskogo ik-izlucheniya // Solnechno-zemnaya fizika. – 2012. – Vyp. 21. – S. 58-61.
3. Shevkunov S. V. Nucleation of water vapor on ions: numerical modeling // JETP. – 1994. – V.78 – №5. – Pp. 677-689.
4. Ermakov V. I. Rol' grozovyh oblakov v mekhanizme svyazi pogody s solnechnoj aktivnost'yu // Geomagnetizm i aehronomiya. – 2000. – T. 40. – № 1. – S. 130-132.
5. Ermakov V. I., Bazilevskaya G. A., Pokrovsky P. E., and Stozhkov Y. I. Ion balance equation in the atmosphere // J. Geophys. Res. – 1997. – V. 102, № D19. – Pp. 23,413-23,419.
6. Rusanov A. I. K termodinamike nukleacii na zaryazhennyh centrah // Dokl. AN SSSR. – 1978. – T.238. – №4. – S.831-834.
7. Rahman A. and Stillinger F. H. Molecular dynamics study if liquid water // J. Chem. Phys., – 1971. – V. 55. – Rp. 3336-3359.
8. Krymskij G. F., Petuhov S. I., Pavlov G. S. Modelirovanie kondensacii vodyanogo para. Zaryazhennye klastery // Optika atmosfery i okeana. – 2017. – T. 30. – № 04. – S. 281-284.
9. Lapshin V. B., YAblokov M. YU., Palej A. A. Davlenie para nad zaryazhennoj kaplej // ZHurnal fiz. himii. – 2002. T. 76, № 10. – S. 1901-1903.
10. Yu F. Modified Kelvin-Thomson equation considering ion-dipole interaction: Comparison with observed ion-clustering enthalpies and entropies // J. Chem. Phys. – 2005. – V. 122, – N 8. – Pp. 084503.
11. Reznikov M., “Dielectrophoretic Dehumidification of Gas Stream in Low and Moderate Electrical Fields,” Proc. ESA-IEEE Joint Meeting of Electrostatics, Little Rock, AR, June 24 27. – 2003. – Pp. 230-240.
Review
For citations:
Pavlov G.S., Krymsky G.F. Potential for Water Clusters Modeling. Vestnik of North-Eastern Federal University. 2019;(1):50-57. (In Russ.) https://doi.org/10.25587/SVFU.2019.69.25525