Electronic and Optical Properties of MoS2/WS2 Planar Heterostructure
https://doi.org/10.25587/2222-5404-2023-20-3-42-49
Abstract
Semiconductor heterostructures are widely used in various electronic devices. Two-dimensional semiconductor heterostructures are the subject of study in fundamental science and are of interest for various applications in nanoelectronics. It is known that both vertical and planar heterostructures can be created. In vertical heterostructures, monolayers are stacked on top of each other and are connected to each other by weak bonds, called van der Waals bonds. In planar heterostructures, the materials are aligned along the layers and the atoms interact with each other by strong covalent bonds. Planar heterostructures, in particular, the MoS2/WS2 heterostructure, have a finer band structure rearrangement, which manifests itself in the observed optical properties of the material. Due to this,the material can be used in the electronics to create devices based on transition metals – typical semiconductors of such materials. Moreover, a planar heterostructure has different optical properties depending on the polarization of light and the direction of propagation of light waves. This behavior allows this material to be used to create optical and related devices such as filters, optical fibers, and sensors. In this paper we study the electronic and optical properties of the planar MoS2/WS2 heterostructure based on the density functional theory. The band structure of the planar MoS2/WS2 heterostructure is calculated, and the complex permittivities and complex refractive indices of the MoS2 and WS2 monolayers and the MoS2/WS2 heterostructure are calculated.
About the Authors
E. P. SharinRussian Federation
Sharin Egor Petrovich – Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Theoretical Physics
Yakutsk
A. A. Novgorodov
Russian Federation
Novgorodov Arsen Andreevich – Student, Institute of Physics and Technology
Yakutsk
References
1. Grigorieva I. V., Geim A. K. (2013). Van der Waals heterostructures. Nature. V. 499. No 7459, pp. 419–425. doi:10.1038/nature12385
2. Xia F., Wang H., Xiao D. et al. (2014). Two-dimensional material nanophotonics. Nature Photonics. V. 8. No 12, pp. 899–907.
3. Li M.-Y., Shi Y., Cheng C.-C. et al. (2015). Epitaxial Growth of a Monolayer WSe2-MoS2 Lateral Pn Junction with an Atomically Sharp Interface. Science. 349(6247), pp. 524–528. https://doi.org/10.1126/ science.aab4097
4. Формирование наноструктурированных пленок MoS2 , WS2 , MoO2 и гетероструктур на их основе / А. Б. Логинов, Р. Р. Исмагилов, С. Н. Бокова-Сирош и др. //Журнал технической физики. – 2021. – Т. 91. – № 10. – С. 1509-1516. DOI: 10.21883/JTF.2021.10.51364.102-21
5. Xu H, Han X, Dai X et al. (2018). High detectivity and transparent few‐layer MoS2/glassy‐graphene heterostructure photodetectors. Advanced materials. V. 30. No 13, pp. 1706561. https://doi.org/10.1002/adma.201706561
6. Du W., Yu P., Zhu J. et al. (2020). An ultrathin MoSe2 photodetector with near-perfect absorption. Nanotechnology. V. 31. No 22, pp. 225201. DOI:10.1088/1361-6528/ab746f
7. Du W., Li C., Sun J. et al. (2020). Nanolasers: Nanolasers Based on 2D Materials. Laser & photonics reviews. V. 14. No 12, p. 2070066. https://doi.org/10.1002/lpor.202070066
8. Butler S. Z., Hollen S. M., Cao L. et al. (2013). Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano. V. 7. – No 4, pp. 2898-2926. https://doi.org/10.1021/nn400280c
9. He Y.-M., Clark G., Schaibley J. R. et al. (2015). Single quantum emitters in monolayer semiconductors. Nature nanotechnology. V. 10. No 6, pp. 497–502. https://doi.org/10.1038/nnano.2015.75
10. Turunen M., Brotons-Gisbert M., Dai Y. et al. (2022). Quantum photonics with layered 2D materials. Nature Reviews Physics. V. 4. No 4, pp. 219–236. https://doi.org/10.1038/s42254-021-00408-0
11. Shen P. C. (2017) Large-area CVD growth of two-dimensional transition metal dichalcogenides and monolayer MoS2 and WS2 metal-oxide-semiconductor field-effect transistors. Ph.D. dissertation. Massachusetts Institute of Technology.
12. Wang X., Lu Y., Zhang J. et al. (2021). Highly sensitive artificial visual array using transistors based on porphyrins and semiconductors. Small. V. 17. No 2. P. 2005491. https://doi.org/10.1002/smll.202005491
13. Neupane M.R., Ruzmetov D., Burke R. et al. (2018). Challenges and opportunities in integration of 2D materials on 3D substrates: materials and device perspectives. IEEE, p. 1–2 (76th device research conference). https://doi.org/10.1109/DRC.2018.8442141
14. Tang Y., Li H., Mao X. et al. (2019). Bidirectional heterostructures consisting of graphene and lateral MoS 2/WS 2 composites: a first-principles study. RSC advances. V. 9. No 60, pp. 34986–34994.
15. Novgorodov, А. А. (2023). Electronic and Optical Properties of the MoS2/WS2 Lateral Heterostructure. Diploma Thesis. North-Eastern Federal University. (in Russian)
16. Rassay, Sushant Shashikant. (2017). Electrical, electronic and optical properties of MoSe2 and WSe2. New Jersey Institute of Technology, p. 68. Available from: https://digitalcommoms.njit.edu/theses/8. [Accessed XXXX]
Review
For citations:
Sharin E.P., Novgorodov A.A. Electronic and Optical Properties of MoS2/WS2 Planar Heterostructure. Vestnik of North-Eastern Federal University. 2023;20(3):42-49. (In Russ.) https://doi.org/10.25587/2222-5404-2023-20-3-42-49