Preview

Vestnik of North-Eastern Federal University

Advanced search

Modeling of stationary and oscillating discrete breather in a CsCl type biatomic crystal

https://doi.org/10.25587/2222-5404-2025-22-4-67-78

Abstract

This paper explores the modeling of stationary and oscillating discrete breathers in a biatomic crystal of the CsCl type with interatomic interactions described by the β-FPUT potential using molecular dynamics methods. Discrete breathers (DBs) are spatially localized oscillations of particles in defect-free nonlinear chains that can exist only in discrete media and nonlinear systems. Ordered CsCl-type structures belong to crystals with a body-centered cubic (BCC) lattice, the nonlinear dynamics of which have recently attracted considerable interest and attention from researchers. The history of the discovery and evolution of research into DBs and delocalized nonlinear vibrational modes (DNVMs) is presented. Growing interest in the study of mobile DBs capable of transferring energy across the crystal lattice is demonstrated. A computational cell for a bcc crystal with a CsCl structure is depicted, where the case of a large difference in the atomic masses of the components is analyzed. The DNVM and its frequency response are shown, where a gap appears in the phonon spectrum of the crystal. The frequency response of a discrete breather with a hard type of nonlinearity is presented, numerically found in the gap of the phonon spectrum by applying the localization function to the DNVM. This function has the form of a hyperbolic cosine, which allows the discrete breather frequency to deviate from the lower boundary of the phonon spectrum with increasing amplitude. Molecular dynamics simulations in the LAMMPS package resulted in discrete breathers centered on an atom and between two adjacent heavy atoms. Their motions are shown, where the atoms of the heavy sublattice move with much larger amplitudes than the light atoms. Finally, the time dependences of a stationary discrete breather centered on an atom and of discrete breathers oscillating near this configuration are shown. The possibility of the existence of discrete breathers only with an oscillation amplitude greater than 0.2 of the interatomic distance is noted.

About the Authors

M. N. Semenova
Polytechnic Institute (branch) M.K. Ammosov North-Eastern Federal University in Mirny
Россия

Mariya N. SEMENOVA – Cand. of Sci. (Phys. and Math.), Associate Professor

ResearcherID: AAD-2973-2020, Scopus ID: 57204979109

Mirny



Yu. V. Bebikhov
Polytechnic Institute (branch) M.K. Ammosov North-Eastern Federal University in Mirny
Россия

Yuriy V. BEBIKHOV – Doct. of Sci. (Phys. and Math.), Associate Professor, Head of the Department of Electric Power Engineering and Industrial Automation

ResearcherID: JCE-6803-2023, Scopus ID: 35329263600

Mirny



E. K. Naumov
Institute of Physics of Molecules and Crystals, Ufa Federal Research Center of the Russian Academy of Sciences
Россия

Evgeny K. NAUMOV – Graduate Student 

Scopus ID: 57798022700

Ufa



S. V. Dmitriev
Institute of Physics of Molecules and Crystals, Ufa Federal Research Center of the Russian Academy of Sciences
Россия

Sergey V. DMITRIEV – Doct. of Sci. (Phys. and Math.), Professor, Head of laboratory

ResearcherID: M-9582-2013, Scopus ID: 7102791521

Ufa

 



References

1. Dolgov AS. On the localization of oscillations in a nonlinear crystal structure. Physics of the Solid State. 1986;28(6):1641-1644. (in Russian)

2. Sievers AJ, Takeno S. Intrinsic localized modes in anharmonic crystals. Physical Review Letters. 1988;61(8):970-973. (in English) DOI: 10.1103/PhysRevLett.61.970.

3. Flach S, Willis C. Discrete breathers. Physics Reports. 1998;295(5):181-264. (in English) DOI: 10.1016/S0370-1573(97)00068-9.

4. Flach S, Gorbach AV. Discrete breathers - advances in theory and applications. Physics Reports. 2008;467(1-3):1-116. (in English) DOI: 10.1016/j.physrep.2008.05.002.

5. Sakhnenko VP, Chechin GM. Symmetry Selection Rules in Nonlinear Dynamics of Atomic Systems. Doklady Akademii Nauk. 1993;330(3):308-310. (in Russian)

6. Sakhnenko VP, Chechin GM. Mode bushes and normal oscillations for nonlinear dynamical systems with discrete symmetry. Doklady Akademii Nauk. 1994;338(1):42-45. (in Russian)

7. Chechin GM, Sakhnenko VP. Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results. Physica D: Nonlinear Phenomena. 1998;117(1-4):43-76. (in English) DOI: 10.1016/S0167-2789(98)80012-2.

8. Kiselev SA, Bickham SR, Sievers AJ. Anharmonic gap modes in a perfect one-dimensional diatomic lattice for standard two-body nearest-neighbor potentials. Physical Review B. 1993;48(18):13508-13511. (in English) DOI: 10.1103/physrevb.48.13508.

9. Kiselev SA, Sievers AJ. Generation of intrinsic vibrational gap modes in three-dimensional ionic crystals. Physical Review B. 1997;55(9): 5755-5758. (in English) DOI: 10.1103/PhysRevB.55.5755.

10. Voulgarakis NK, Hadjisavvas G, Kelires PC, Tsironis G.P. Computational investigation of intrinsic localization in crystalline Si. Physical Review B. 2004;69:113201. (in English) DOI: 10.1103/PhysRevB.69.113201.

11. Murzaev RT, Bachurin DV, Korznikova EA, Dmitriev SV. Localized vibrational modes in diamond. Physics Letters A. 2017;381(11):1003-1008. (in English) DOI: 10.1016/j.physleta.2017.01.014.

12. Kistanov AA, Semenov AS, Murzaev RT, Dmitriev SV. Stationary and moving discrete breathers in HCP metal Co. Fundamental’nye problemy sovremennogo materialovedenia = Basic Problems of Material Science. 2014;11(3):322-325. (in Russian)

13. Kistanov AA, Semenov AS, Murzaev RT, Dmitriev SV. Interaction of moving discrete breathers in HCP metal Mg. Fundamental’nye problemy sovremennogo materialovedenia = Basic Problems of Material Science. 2014;11(4-2):572-577. (in Russian)

14. Medvedev NN, Starostenkov MD, Zakharov PV, Pozidaeva OV. Localized oscillating modes in two-dimensional model of regulated Pt3Al alloy. Technical Physics Letters. 2011;37(2):98-101. (in English) DOI: 10.1134/S1063785011020106.

15. Semenov AS, Fomin SYu, Zhou K, Soboleva EG. Discrete breather with hard-type nonlinearity in a two-dimensional diatomic crystal. Letter on materials. 2017;7(3):327-331. DOI: 10.22226/2410-3535-2017-3-327-331. (in Russian)

16. Semenov AS, Korznikova EA, Dmitriev SV. Discrete breathers with hard and soft types of nonlinearity in a one-dimensional chain with long-range Morse interaction.. Letter on materials. 2015;5(1):11-14. DOI: 10.22226/2410-3535-2015-1-11-14. (in Russian)

17. Kistanov AA, Semenov AS. Collision of moving discrete breathers in a two-dimensional monatomic crystal. Fundamental’nye problemy sovremennogo materialovedenia = Basic Problems of Material Science. 2014;11(2):241-244. (in Russian)

18. Kistanov AA, Dmitriev SV, Semenov AS. Properties of moving discrete breathers in a monoatomic two-dimensional crystal. Journal of Experimental and Theoretical Physics. 2014;119(4):766-771. (in English) DOI: 10.1134/S1063776114100045.

19. Kistanov AA, Dmitriev SV, Semenov AS, et al. Interaction of propagating discrete breathers with a vacancy in a two-dimensional crystal. Technical Physics Letters. 2014;40(8):657-661. (in English) DOI: 10.1134/S1063785014080069.

20. Bachurina OV, Murzaev RT, Korznikova EA, et al. Properties of moving discrete breathers in beryllium. Physics of the Solid State. 2018;60(5):989-994. (in English) DOI: 10.1134/S1063783418050049.

21. Murzaev RT, Kistanov AA, Dubinko VI, et al. Moving discrete breathers in bcc metals V, Fe and W. Computational Materials Science. 2015;98:88-92. (in English) DOI: 10.1016/j.commatsci.2014.10.061.

22. Krylova KA, Dmitriev SV, Lobzenko IP, et al. Spherically localized discrete breathers in BCC metals V and Nb. Computational Materials Science. 2020;180:109695. (in English) DOI: 10.1016/j.commatsci.2020.109695.

23. Kazakov AM, Sharapova YuR, Babicheva RI, et al. Modeling obstacle overcoming in the form of pores by dislocations in tungsten. Frontier Materials & Technologies. 2022;(3-1):76-84. DOI: 10.18323/2782-4039-2022-3-1-76-84. (in Russian)

24. Sharapova YuR, Kazakov AM, Semenov AS, et al. Molecular dynamics analysis of dispersion hardening by coherent intermetallic phases in BCC tungsten Fundamental’nye problemy sovremennogo materialovedenia = Basic Problems of Material Science. 2023;20(4):455-461. DOI: 10.25712/ASTU.1811-1416.2023.04.004. (in Russian)

25. Sharapova YuR., Kazakov AM, Semenova MN, et al. Dynamics of a 2-crowdion and energy transfer in tungsten: atomistic modeling. Vestnik of North-Eastern Federal Unversity . 2024;21(4):73-80. DOI: 10.25587/2222-5404-2024-21-4-73-80. (in Russian)

26. Shcherbinin SA, Bebikhov YV, Abdullina DU, et al. Delocalized nonlinear vibrational modes and discrete breathers in a body centered cubic lattice. Communications in Nonlinear Science and Numerical Simulation. 2024;135:108033. (in English) DOI: 10.1016/j.cnsns.2024.108033.

27. Bachurin DV, Murzaev RT, Abdullina DU, et al. Chaotic discrete breathers in bcc lattice: Effect of the first-and second-neighbor interactions. Physica D: Nonlinear Phenomena. 2024;470:134344. (in English) DOI: 10.1016/j.physd.2024.134344.

28. Kolesnikov ID, Shcherbinin SA, Bebikhov YV, et al. Chaotic discrete breathers in bcc lattice. Chaos, Solitons & Fractals. 2024;178(8):114339. (in English) DOI: 10.1016/j.chaos.2023.114339.

29. Bebikhov YV, Naumov EK, Semenova MN, Dmitriev SV. Discrete breathers in a β-FPUT square lattice from in-band external driving. Communications in Nonlinear Science and Numerical Simulation. 2024;132(7475):107897. (in English) DOI: 10.1016/j.cnsns.2024.107897.

30. Abdullina DU, Bebikhov YuV, Semenova MN, et al. Gap discrete breather in a B2 diatomic crystal. Fundamental’nye problemy sovremennogo materialovedenia = Basic Problems of Material Science. 2025;22(2):184-193. DOI: 10.25712/ASTU.1811-1416.2025.02.006. (in Russian)

31. Shcherbinin SA, Kazakov AM, Bebikhov YV, et al. Delocalized nonlinear vibrational modes and discrete breathers in β-FPUT simple cubic lattice. Physical Review E. 2024;109(1):014215. (in English) DOI: 10.1103/PhysRevE.109.014215.

32. Page JB. Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems. Physical Review B. 1990;41(11):7835-7838. (in English) DOI: 10.1103/physrevb.41.7835.

33. Abdullina DU, Bebikhov YuV, Semenova MN, Dmitriev SV. Excitation of Moving Discrete Breathers in Square β-FPUT Lattice by External Driving. Physics of the Solid State. 2025;67(11):977982. (in English) DOI: 10.1134/S1063783425602346.

34. Bingol S, Erdinc B, Akkus H. Electronic band structure, optical, dynamical and thermodynamic properties of cesium chloride (CsCl) from first-principles. International Journal for Simulation and Multidisciplinary Design Optimization. 2015;6:A7. (in English) DOI: 10.1051/smdo/2015007.

35. Durukan İK, Çiftci Y. DFT analysis of mechanical and dynamic properties of CuBe. Gazi University Journal of Science. 2022;35(4):1652-1663. (in English) DOI: 10.35378/gujs.915127.


Review

For citations:


Semenova M.N., Bebikhov Yu.V., Naumov E.K., Dmitriev S.V. Modeling of stationary and oscillating discrete breather in a CsCl type biatomic crystal. Vestnik of North-Eastern Federal University. 2025;22(4):67-78. (In Russ.) https://doi.org/10.25587/2222-5404-2025-22-4-67-78

Views: 28

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)