Preview

Vestnik of North-Eastern Federal University

Advanced search

Optoelectronic properties of carbon films obtained by deposition in CH4 plasma and subsequent heat treatment

https://doi.org/10.25587/k1396-1824-9367-e

Abstract

The films several tens of nm thick were formed by the deposition of carbon atoms in methane plasma on SiO2 substrates followed by heat treatment at temperatures from 650 °C to 800 °C. Atomic force and electron microscopy, IR and UV spectroscopy, Raman spectroscopy and current measurements by a two-probe method were used to study the optical and electrical properties of the obtained films. Analysis of the results of optical studies showed that the films have bands of absorption in the UV- and IR regions. The results of exposure to illumination of a halogen lamp, which has a wide spectral range, showed a change in the photocurrent up to 1.85 mA at a voltage across the sample of 8 V. The magnitude of the photocurrent depends on the voltage and saturation occurs when 10 V is reached. The photosensitivity of the synthesized carbon films is explained by the photogeneration of charge carriers under illumination. The voltage dependence is associated with the effective separation of photogenerated charge carriers by an electric field. It was concluded that the films obtained can be used as daylight photosensors.

About the Authors

E. P. Neustroev
M.K. Ammosov North-Eastern Federal University
Russian Federation


A. R. Prokopev
M.K. Ammosov North-Eastern Federal University
Russian Federation


References

1. Geim A. K. Graphene: status and prospects // Science. - 2009. - V. 324. - No 5934. - P. 1530-1534.

2. Chen Y., Xie Y., Yan X., Cohen M. L., Zhang S. Topological carbon materials: A new perspective // Physics Reports. - 2020. - V.868. - P. 1-32.

3. Kumar R., Joanni E., Singh R. K., Singh D. P., Moshkalev S. A. Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage // Progress in Energy and Combustion Science. - 2018. - V. 67. - P. 115-157.

4. Lee X. J. et al. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation // Journal of the Taiwan Institute of Chemical Engineers. - 2019. - V. 98. - P. 163-180.

5. Kirchner E. M., Hirsch T. Recent developments in carbon-based two-dimensional materials: synthesis and modification aspects for electrochemical sensors // Microchimica Acta. - 2020. - V. 187. - №. 8. - P. 1-21.

6. Kumar R., Joanni E., Singh R. K., Singh D. P., Moshkalev, S. A. Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage // Progress in Energy and Combustion Science. - 2018. - V. 67. - P. 115-157.

7. Sankaran R. M. Plasma processing of nanomaterials / Boca-Raton, Florida: CPC Press, 2011. - P. 416.

8. Wang Q., Wang X., Chai Z., Hu W. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications // Chemical Society Reviews. - 2013. - V. 42. - No 23. - P. 8821-8834.

9. Chu P. K., Lu X. P. Low temperature plasma technology: methods and applications/ Boca-Raton, Florida: CPC Press, 2013. - P. 474.

10. Ивановский Г. Ф., Петров В. И. Ионно-плазменная обработка материалов // М.: Радио и связь. - 1986. - С. 232.

11. Кралькина Е. А. Индуктивный высокочастотный разряд низкого давления и возможности оптимизации источников плазмы на его основе // Успехи физических наук. - 2008. - Т. 178. - № 5. - С. 519-540.

12. Неустроев Е. П., Прокопьев А. Р. Свойства нанографита, образованного плазменным осаждением и последующей термообработкой / Межвузовский сборник научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов». - Тверь: Твер. гос. ун-т, 2019. - Вып. 11. - С. 629-635.

13. Neustroev E. P., Popov V. I., Prokopiev A. R., Davydova Z. Y., Semenov S. O. Formation of nanographite on SiO2 substrate by plasma deposition of carbon and subsequent annealing // AIP Conference Proceedings. - 2019. - V. 2179. - P. 020019 (1-8).

14. Неустроев Е. П., Прокопьев А. Р. Механизм проводимости нанографита, образованного осаждением в плазме метана и последующей термообработкой // Радиоэлектроника, наносистемы, информационные технологии. - 2019. - T. 11. - № 3. - С. 315-320.

15. López-Díaz D., López Holgado M., García-Fierro J. L., Velázquez M. M. Evolution of the Raman spectrum with the chemical composition of graphene oxide // The Journal of Physical Chemistry C. - 2017. - V. 121. - No 37. - P. 20489-20497.

16. Wu J. B., Lin M. L., Cong X., Liu H. N., Tan P. H. Raman spectroscopy of graphene-based materials and its applications in related devices // Chemical Society Reviews. - 2018. - V. 47. - No 5. - V. 1822-1873.

17. Pimenta M. A., Dresselhaus G., Dresselhaus M. S., Cancado L. G., Jorio A., Saito R. Studying disorder in graphite-based systems by Raman spectroscopy //Physical chemistry chemical physics. - 2007. - V. 9. - No 11. - С. 1276-1290.

18. Beams R., Cançado L. G., Novotny L. Raman characterization of defects and dopants in graphene // Journal of Physics: Condensed Matter. - 2015. - V. 27. - No 8. - P. 083002.

19. Neustroev E. P., Prokopiev A. R., Popov V. I. Influence of Substrates on Conductivity of Thin Carbon Films Deposited by Methane Plasma and Subsequent Annealed // Journal of Physics: Conference Series. - IOP Publishing, 2020. - V. 1611. - No 1. - P. 012006.

20. Chitturi M. V., Benekohal R. F., Girianna M. Turn-On and Turn-Off Characteristics of Incandescent and Light-Emitting Diode Signal Modules // ITE JOURNAL. - 2005. - V. 69. - P.69-72.


Review

For citations:


Neustroev E.P., Prokopev A.R. Optoelectronic properties of carbon films obtained by deposition in CH4 plasma and subsequent heat treatment. Vestnik of North-Eastern Federal University. 2021;(1):34-42. (In Russ.) https://doi.org/10.25587/k1396-1824-9367-e

Views: 115


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)