Preview

Вестник Северо-Восточного федерального университета имени М. К. Аммосова

Расширенный поиск

Структура и электронные свойства фторированного графена

https://doi.org/10.25587/q4320-9154-5425-v

Аннотация

Графен обладает целым рядом уникальных свойств, чем и привлекает внимание многих исследователей. Кроме фундаментального интереса, связанного с «релятивистским» поведением носителей заряда, графен перспективен как материал для приборов нано-, оптоэлектроники и плазмоники. Когда мы говорим о достоинствах приборов на основе графена, в литературе везде упоминаются: высокая подвижность электронов, возможность эффективного управления электрическими и оптическими свойствами с помощью внешнего напряжения. Эффективность в данном случае обусловлена низкой плотностью электронных состояний, которая определяется линейной зависимостью энергетического спектра от волнового вектора. Основным препятствием к применению графена в электронике является отсутствие запрещенной зоны между валентной зоной и зоной проводимости. Химическая модификация графеновых слоев имеет большое значение для разработки новых материалов, поскольку она не только открывает щель между валентной зоной и зоной проводимости, но и позволяет контролировать ее ширину. Поэтому одной из областей исследований таких систем является химическая функционализация, а именно адсорбирование атомами фтора графена. В данной работе мы изучили структурные и электронные свойства фторированного графена в зависимости от концентрации атомов фтора и от их местоположения в кристаллической решетке, используя вычисления из первых принципов, основанные на теории функционала плотности. Результаты показывают, что электронные свойства фторированного графена сильно зависят от степени фторирования и местоположения атомов в кристаллической решетке.

Об авторе

Егор Петрович Шарин
СВФУ им. М.К. Аммосова
Россия


Список литературы

1. Geim, A. The rise of grapheme / A. Geim, K. Novoselov // Nature Materials. - 2007. - Vol. 6. - P. 183-191. - URL: http://dx.doi.org/10.1038/nmat1849.

2. Pendry, J. Negative Refraction for Electrons? // Science. - 2007. - Vol. 315. - P. 1226-1227.

3. Popinciuc, M. Electronic spin transport in graphene field-effect transistors / M. Popinciuc [et al.] // Physical Review B. - 2009. - Vol. 80. - №. 21. - P. 214427. - URL: https://doi.org/10.1103/PhysRevB.80.214427/

4. Seol, J. H. Two-dimensional phonon transport in supported grapheme / J. H. Seol [et al.] //Science. - 2010. - Vol. 328. - №. 5975. - P. 213-216. -. DOI: 10.1126/science.1184014.

5. Charlier, J. C. First-principles study of the electronic properties of graphite / J. C. Charlier, X. Gonze, J. Michenaud // Physical Review B. - 1991. - Vol. 43. - №. 6. - P. 4579. DOI: 10.1103/physrevb.47.16162.

6. Theoretical analysis of the chemical bonding and electronic structure of graphene interacting with group ia and group viia elements / M. Klinterbarg, S. Lebegue, M. Katsnelson, O. Eriksson // Physical Review B. - 2010. - Vol. 81. - P. 085433-085438. DOI: 10.1103/PhysRevB.81.085433.

7. First-principles investigation of graphene fluoride and graphane / O. Leenaerts [et al.] //Physical Review B. - 2010. - Vol. 82. - №. 19. - P. 195436.

8. Markevich, A. Doping of fluorographene by surface adsorbates / A. Markevich, R. Jones, P. R. Briddon // Physical Review B. - 2011. - Vol. 84. - №. 11. - P. 115439. - URL: https://doi.org/10.1103/PhysRevB.84.115439.

9. l. Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor / Cheng S. H. [et al.] //Physical Review B. - 2010. - Vol. 81. - №. 20. - P. 205435. - URL: https://doi.org/10.1103/PhysRevB.81.205435.

10. Selective-area fluorination of graphene with fluoropolymer and laser irradiation / Lee W. H. [et al.] //Nano letters. - 2012. - Vol. 12. - №. 5. - P. 2374-2378.

11. Withers F. [et al.] // Nanopatterning of fluorinated graphene by electron beam irradiation /| F. Withers [et al.] //Nano letters. - 2011. - Vol. 11. - №. 9. - P. 3912-3916.

12. Santos, H. Fluorine adsorption on single and bilayer graphene: role of sublattice and layer decoupling / H. Santos, L. Henrard // The Journal of Physical Chemistry C. - 2014. - Vol. 118. - №. 46. - P. 27074-27080.

13. Wang, Z. Fluorine adsorption on the graphene films: from metal to insulator / Z. Wang [et al.] //Computational Materials Science. - 2015. - Vol. 97. - P. 14-19.

14. Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine / Liu H. Y. [et al.] //The Journal of Physical Chemistry C. - 2012. - Vol. 116. - №. 34. - P. 18193-18201.

15. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials / P. Giannozzi [et al.] //Journal of physics: Condensed matter. - 2009. - Vol. 21. - №. 39. - P. 395502.

16. Monkhorst, H. J. Special points for Brillouin-zone integrations / H. J. Monkhorst, J. D. Pack // Physical review B. - 1976. - Vol. 13. - №. 12. - P. 5188.

17. Karlický, F. Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives / F. Karlický [et al.] // ACS Nano. - 2013. - Vol. 7. - No. 8. - P. 6434-6464.


Рецензия

Для цитирования:


Шарин Е.П. Структура и электронные свойства фторированного графена. Вестник Северо-Восточного федерального университета имени М. К. Аммосова. 2021;(6):24-30. https://doi.org/10.25587/q4320-9154-5425-v

For citation:


Sharin E.P. The structure and electronic properties of fluorinated graphene. Vestnik of North-Eastern Federal University. 2021;(6):24-30. (In Russ.) https://doi.org/10.25587/q4320-9154-5425-v

Просмотров: 129


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)