Preview

Vestnik of North-Eastern Federal University

Advanced search

Molecular Simulation of the Diffusion Processes in Membrane Structures on the Examples of the Serotonin Receptor Ion Channel

https://doi.org/10.25587/SVFU.2019.71.31940

Abstract

Studying dynamics and function of ion channels is a field of interest of modern experimental molecular biology. At the same time, there are limited number of methods that allow studying the processes on molecular level with atomic precision. The most accurate methods that provide data on the atomic structure of molecules are the X-ray crystallography (XRC) and the nuclear magnetic resonance spectroscopy (NMR) methods. However, the XRC method provides data on the atomic structure of the crystallized molecule, while the crystallization conditions are usually far from physiological. Using structural data, obtained from the XRC/NMR methods, it is impossible to determine the state of the channel (open or closed) and analyze the dynamic of the processes under study. In this article, the molecular simulation methods are used to study the structure, dynamics and the diffusion processes on the water-membrane interface, as well as the process of ion transportation in 5-HT3 mouse serotonin 5HT-3 receptor, the spatial structure of which was determined in 2014. Based on the full-atom structure of the ion channel, we constructed the model, containing transmembrane domain of the 5-HT3 receptor with lipid bilayer and solvent. Molecular dynamics protocols for simulation of the transmebrane domain of the ion channel were developed. We used steered molecular dynamics for simulation of the transmembrane Na+ ion transport under external electric field. Using the umbrella sampling method, we estimated the free energy profile of Na+ ions transfer through the channel. Using the computer simulation methods (including molecular dynamics method) allowed us making reasonable assumptions about the conformation and conductive state of the ion channel under study.

About the Authors

M. Y. Antonov
M.K.Ammosov North-Eastern Federal University
Russian Federation


A. V. Popinako
Bach Institute of Biochemistry, RAS
Russian Federation


I. N. Nikolaev
M.K.Ammosov North-Eastern Federal University
Russian Federation


References

1. Overington J. P., Al-Lazikani B., Hopkins A. L. How many drug targets are there? // Nat. Rev. Drug Discov. - 2006. - Vol. 5, - № 12. - P. 993-996.

2. Hopkins A. L., Groom C. R. The druggable genome. // Nat. Rev. Drug Discov. - 2002. - Vol. 1. - № 9. - P. 727-730.

3. Wray D. Intracellular regions of potassium channels: Kv2.1 and heag. // Eur. Biophys. J. - 2009. - Vol. 38. - № 3. - P. 285-292.

4. Pischalnikova A. V, Sokolova O. S. The domain and conformational organization in potassium voltage-gated ion channels. // J. Neuroimmune Pharmacol. - 2009. - Vol. 4. - № 1. - P. 71-82.

5. Sokolova O. S. et al. Three-dimensional structure of human voltage-gated ion channel Kv10.2 studied by electron microscopy of macromolecules and molecular modeling // Russ. J. Bioorganic Chem. - 2012. - Vol. 38. - № 2.

6. Shaitan K. V. V. et al. Comparative study of molecular dynamics, diffusion, and permeability for ligands in biomembranes of different lipid composition // Biochem. Suppl. Ser. A Membr. Cell Biol. - 2008. - № 2. - P. 73-81.

7. Hassaine G. et al. X-ray structure of the mouse serotonin 5-HT3 receptor. // Nature. - 2014. - Vol. 512. - P. 276-281.

8. Kudryashev M. et al. The Structure of the Mouse Serotonin 5-HT 3 Receptor in Lipid Vesicles // Structure. - 2016. - Vol. 24. - № 1. - P. 165-170.

9. Yuan S., Filipek S., Vogel H. A Gating Mechanism of the Serotonin 5-HT 3 Receptor // Structure. - 2016. - Vol. 24. - № 5. - P. 816-825.

10. Антонов М. Ю. et al. Моделирование ионного канала серотонинового 5-HT3 рецептора методами молекулярной динамики // Вестник СВФУ. - 2015. - № 50(6). - С. 69-79.

11. Tarek M. et al. In-Silico Electrophysiology: On the Activation of Voltage-Gated Ion Channels using Molecular Dynamics Simulations // Biophys. J. Elsevier. - 2016. - Vol. 110. - № 3. - P. 107a.

12. Delemotte L. et al. Modeling Membranes under a Transmembrane Potential // J. Phys. Chem. B. - 2008. - Vol. 112. -№ 18. - P. 5547-5550.

13. Delemotte L., Klein M. L., Tarek M. Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation. // Front. Pharmacol. Frontiers Media SA. - 2012. - Vol. 3. - P. 97.

14. Kästner J. Umbrella sampling // Wiley Interdiscip. Rev. Comput. Mol. Sci. John Wiley & Sons, Inc. - 2011. - Vol. 1. - № 6. - P. 932-942.

15. Buch I., Sadiq S. K., De Fabritiis G. Optimized Potential of Mean Force Calculations for Standard Binding Free Energies // J. Chem. Theory Comput. American Chemical Society. - 2011. - Vol. 7. - № 6. - P. 1765-1772.

16. Torrie G. M., Valleau J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling // J. Comput. Phys. - 1977. - Vol. 23. - № 2. - P. 187-199.

17. Kumar S. et al. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method // J. Comput. Chem. - 1992. - Vol. 13. - № 8. - P. 1011-1021.

18. Hess B. et al. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation // J. Chem. Theory Comput. American Chemical Society. - 2008. - Vol. 4. - № 3. - P. 435-447.

19. Oostenbrink C. et al. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. // J. Comput. Chem. - 2004. - Vol. 25. - № 13. - P. 1656-1676.

20. Kandt C., Ash W. L., Peter Tieleman D. Setting up and running molecular dynamics simulations of membrane proteins // Methods. - 2007. - Vol. 41. - № 4. - P. 475-488.

21. Tieleman D. P. et al. Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations. // Biochemistry. American Chemical Society. - 1998. - Vol. 37. - № 50. - P. 17554-17561.

22. Antonov M. Y., Popinako A. V., Prokopiev G. A. Molecular dynamics simulation of the structure and dynamics of 5-HT3 serotonin receptor // AIP Conference Proceedings. - 2016. - Vol. 1773.

23. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. // J. Mol. Graph. - 1996. - Vol. 14. - № 1. - P. 33-38, 27-28.


Review

For citations:


Antonov M.Y., Popinako A.V., Nikolaev I.N. Molecular Simulation of the Diffusion Processes in Membrane Structures on the Examples of the Serotonin Receptor Ion Channel. Vestnik of North-Eastern Federal University. 2019;(3):5-15. (In Russ.) https://doi.org/10.25587/SVFU.2019.71.31940

Views: 107


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)