Preview

Vestnik of North-Eastern Federal University

Advanced search

Dynamics of the energy spectrum of solar-diural variations in the intensity of cosmic rays in 22–25 cycles of solar activity

https://doi.org/10.25587/2222-5404-2024-21-2-46-57

Abstract

Periodic  24-hour  variations  in  the  intensity  of  galactic  cosmic  rays,  continuously  observed by  ground-based  detectors,  are  called  solar  diurnal  variations.  The  nature  of  these  variations  lies  in the existence in the interplanetary medium of an anisotropic spatial distribution of galactic cosmic rays, which arises during the interaction of these particles with the heliosphere. It is believed that the physical factors responsible for the observed anisotropy of galactic cosmic rays are the processes of convection, diffusion and their drift. The combination of these factors determines the main parameters of solar diurnal variations, such as amplitude, phase and energy spectrum. To study the energy spectrum of solar-diurnal variations, we used measurement data from muon telescopes of the Yakutsk Cosmic Ray Spectrograph after A.I. Kuzmin and Nagoya stations (Japan). The research approach is based on the idea of the crossed  telescope method, originally designed to take into account the temperature effect. Due to the difference in the receiving characteristics of the crossed northern and southern directions of the above muon telescopes, the intensity variations recorded by them are sensitive to changes in the energy spectrum of solar-diurnal variations. This property was used to assess the dynamics of the energy spectrum of solar-diurnal variations for 22–25 cycles of solar activity. Analysis of the data obtained showed that in the last minimum of solar activity  in  2018-2021.  An  anomalously  early  phase  of  solar-diurnal  variations  was  observed.  To  study this phenomenon, we simulated the ratio and phase difference of a pair of northern and southern crossed  directions  for  both  muon  telescopes  for  different  types  and  values  of  the  energy  spectrum  of  solar-diurnal variations. A comparison of model calculations and observational data has made it possible to establish that during periods of minimum solar activity in the positive polarity of the general magnetic  field of the Sun, a significant softening of the energy spectrum of solar-diurnal variations is observed.  The reasons for the discovered phenomenon are discussed.

About the Authors

P. Yu. Gololobov
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Petr Y.  Gololobov  – Junior Researcher

Yakutsk



S. K. Gerasimova
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Sardana  K . Gerasimova – Cand. S. (Phys. & Math.), Senior Researcher

Yakutsk



V. G. Grigoryev
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Vladislav G .  Grigoryev ‒ Cand. S. (Phys. & Math.), Senior Researcher

Yakutsk



G. F. Krymsky
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Germogen  F.  Krymsky – Counselor of RAS, Academician, Dr. S. (Phys. & Math.)

Yakutsk



V. I. Kozlov
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Valery I.  Kozlov  ‒ Dr. S. (Phys. & Math.), Leading Researcher

Yakutsk



V. E. Timofeev
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Vladislav E .  Timofeev  ‒ Cand. S. (Phys. & Math.), Senior Researcher

Yakutsk



References

1. Hall DL, Duldig ML, Humble JE. Cosmic-ray modulation parameters derived from the solar diurnal variation. Apstophys. J., 1997;482(2):1038-1049. DOI: 10.1086/304158.

2. Munakata K, Kozai M, Kato C, et al. Long-term variation of the solar diurnal anisotropy of galactic cosmic rays observed with the Nagoya multi-directional muon detector. Astrophys. J., 2014;791(22). DOI: 10.1088/0004-637X/791/1/22.

3. Krymsky GF. Diffusion mechanism of diurnal variation of galactic cosmic rays. Geomagn. Aeron., 1964;4:763–769. (in Russ.)

4. Skripin GV, Mamrukova VP. 22-year variations of the diurnal anisotropy of cosmic rays. Russian Academy of Sciences, Series Physics (ISSN 0367-6765), 1993;57(7):51-54.

5. Krymsky GF, Krivoshapkin PA, Mamrukova VP, et al. 11-year and 22-year variations in the anisotropy of galactic cosmic rays. Bull. Russ. Acad. Sci. Phys., 2007;71(7):971–973.

6. Ahluwalia HS, Riker JF. Secular changes in the upper cut-off rigidity of the solar diurnal anisotropy of cosmic rays. Planet. Space Sci., 1987;35(1):39-43. DOI: 10.1016/0032-0633(87)90142-5.

7. Pomerantz MA, Duggal SP. The cosmic ray solar diurnal anisotropy. Space Sci. Rev., 1971;12:75-130. DOI: 10.1007/BF00172130.

8. Ahluwalia HS. A correlation between IMF and the limiting primary rigidity for the cosmic ray diurnal anisotropy. Geophys. Res. Lett., 1992;19(6):633-636. DOI: 10.1029/92GL00525.

9. Krymsky GF, Altukhov AM, Kuzmin AI, et al. Distribution of cosmic rays and receiving vectors of detectors. Geomagnetism and aeronomy, 1966;6(6):991–996. (in Russ.)

10. Dorman LI. Variations of cosmic rays. Moscow: Gostekhizdat, 1957:492.

11. Skripin GV, Krivoshapkin PA, Krymsky GF, et al. Study of cosmic ray anisotropy using crossed telescopes method. Geomagnetism and aeronomy, 1965;5(5):817-825. (in Russ.)

12. Skripin GV. Study of cosmic rays anisotropy by crossed telescopes method. Candidate dissertation (Nuclear physics). Yakutsk, 1965:184. (in Russ.)

13. http://ysn.ru/ipm/yktMT00/ (Accessed 13 Nov. 2023)

14. http://cosray.shinshu-u.ac.jp/crest/DB/Documents/Docs/DetectorDescription_NGY.pdf (Accessed 13 Nov. 2023)

15. Dorman LI, Smirnov VS, Tyasto MI. Cosmic rays in Earth’s magnetic field. Moscow: Nauka, 1971:400.

16. Munakata K, Mizoguchi Y, Kato C, et al. Solar cycle dependence of the diurnal anisotropy of 0.6 TeV cosmic-ray intensity observed with the Matsushiro underground muon detector. Apstophys. J., 2010;712(2):1100. DOI: 10.1088/0004-637X/712/2/1100.

17. Krymsky GF, Krivoshapkin PA, Gerasimova SK, et al. Energy characteristics of galactic cosmic ray anisotropy. Russian Academy of Science, Series Physics, 2003;67(4):492-495. (in Russ.)

18. Krymsky GF, Krivoshapkin PA, Mamrukova VP, et al. North-south asymmetry of the heliosphere from cosmic-ray observations, Astron. Lett., 2009;35(5):333-337.

19. Virtanen II, Mursula K. Asymmetry of solar polar fields and the southward shift of HCS observed by Ulysses. JGR, 2010;115, A09110.


Review

For citations:


Gololobov P.Yu., Gerasimova S.K., Grigoryev V.G., Krymsky G.F., Kozlov V.I., Timofeev V.E. Dynamics of the energy spectrum of solar-diural variations in the intensity of cosmic rays in 22–25 cycles of solar activity. Vestnik of North-Eastern Federal University. 2024;21(2):46-57. (In Russ.) https://doi.org/10.25587/2222-5404-2024-21-2-46-57

Views: 124


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)