Do emissions from severe fires influence the formation of noctilucent clouds?
https://doi.org/10.25587/2222-5404-2025-22-4-79-93
Abstract
This paper presents analysis of photographs of noctilucent clouds taken on June 30, 2021, over the central part of Yakutia. They were distinguished by their brightness and shape in the form of blurred elongated parallel stripes of haze and many clear waves perpendicular to them. These waves on the clouds demonstrate a "trace" from the propagation of internal gravity waves from the lower layers of the atmosphere to the upper ones. The conditions for the formation and observation of noctilucent clouds are described. Based on Aura MLS satellite data on moisture content and mesopause temperature, the freezing temperature of water vapor was calculated. The increasing frequency of detection of noctilucent clouds is associated with an increase in the concentration of methane in the atmosphere. One of the powerful sources of greenhouse gas emissions is biomass combustion. In the summer of 2021 in Yakutia, extremely strong forest fires were observed over the past four decades. This is evidenced by the active fire data from MODIS and VIIRS sensors. The question arose: "Do emissions from severe fires affect the formation of noctilucent clouds?" For this purpose, methane concentration distribution maps were constructed based on AIRS data, with wind fields from NCEP/NCAR reanalysis data. A strong anticyclone at the end of July 2021 contributed to intensification of forest fires and significant increase in the methane content in the atmosphere in central Yakutia. Such meteorological conditions and the propagation of internal gravity waves could have affected the vertical transport of methane molecules, which likely were transformed into water molecules during chemical reactions in the stratosphere. An increase in the moisture content of the mesosphere could have been one of the components of the cause of the formation of bright noctilucent clouds on June 30, 2021.
Keywords
About the Authors
O. V. TyshchukРоссия
Olesya V. TYSHCHUK – junior researcher
ResearcherID: JEZ-8765-2023
Yakutsk
O. A. Tomshin
Россия
Oleg A. TOMSHIN – junior researcher
ResearcherID: R-9969-2017, Scopus Author ID: 56375103800
Yakutsk
V. S. Starodubtsev
Россия
Vadim S. STARODUBTSEV – junior researcher
Yakutsk
P. G. Mordovskoi
Россия
Petr G. MORDOVSKOI – Cand. Sci. (Technical), Leading Researcher
Yakutsk
References
1. Observations of noctilucent clouds in the USSR Data Cat., 1957-1987. Moscow; 1989: 174 (in Russian)
2. Leslie R. Sky Glows. Nature. 1885;32:245. (in English) DOI: 10.1038/032245a0.
3. Tseraskii V. Selected works on astronomy. Moscow: Publishing House “Technical and theoretical literature”; 1953:196 (in Russian)
4. Jesse O. Striking evening phenomena in the sky. Meteorol. Z. 1885;2:311-312. (in German)
5. Kohlrausch W. On the issue of the height of the clouds. Annalen der Physik. 1887;267;(8):1047-1048. (in German)
6. Bronshten V. Noctilucent clouds and their observation: Moscow: Publishing House “Nauka”; 1984:128 (in Russian)
7. Kulik LA. On the connection between meteorites and comets. Mirovedenie. 1926;15;(2):173178 (in Russian)
8. Wegener A. The temperature of the uppermost atmospheric layers. Meteorol. Z. 1925;42:402-405. (in German)
9. Humphreys W. J. NACREOUS AND NOCTILUCENT CLOUDS. Monthly Weather Review. 1933;61;(8);228-229. (in English) DOI: https://doi.org/10.1175/15200493(1933)61<228:NANC>2.0.CO;2.
10. Vestine E. Noctilucent clouds. J. Astron. Soc. 1934;28:49-272,303-317. (in English)
11. Vasiliev O. Astrophysical studies of noctilucent clouds: Dis. Ph.D. Ph.D. Leningrad: 1967:85 (in Russian)
12. Bronshten V, Grishin N. Noctilucent clouds. Moscow: Publishing House “Nauka”; 1970:359 (in Russian)
13. Nikolashkin SV, Koltovskoy II, Titov SV, Tyshchuk OV. Parameters of internal gravity waves based on observations of noctilucent clouds in Yakutsk. Vestnik of North-Eastern Federal University. 2024;21(3):50-58. DOI: 10.25587/2222-5404-2024-21-3-50-58 (in Russian)
14. Thomas GE., Olivero J. Noctilucent clouds as possible indicators of global change in the mesosphere. Adv. Space Res. 2001;28;(7):937-946. (in English) DOI: 10.1016/S02731177(01)80021-1.
15. Lübken F., Berger U., Baumgarten G. On the Anthropogenic Impact on Long‐Term Evolution of Noctilucent Clouds. Geophys. Res. Lett. 2018; 45;(13):6681-6689. (in English) DOI: 10.1029/2018GL077719.
16. Nisbet EG., Dlugokencky EJ., Manning MR. et al. Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochemical Cycles. 2016;30;(9):1356-1370. (in English) DOI: 10.17863/CAM.6326. DOI:10.17863/CAM.6326.
17. Bazhin NM. Methane in the environment. Novosibirsk: Publishing House “State Public Scientific and Technical Library of the Siberian Branch of the Russian Academy of Sciences”; 2010;93:56 (in Russian)
18. Kislov AV, Surkova GV. Climatology. Moscow: Scientific Research Center INFRA; 2023:324 (in Russian)
19. Hurst DF., Dutton GS., Romashkin PA. et al. Closure of the total hydrogen budget of the northern extratropical lower stratosphere. JGR:Atmospheres: Atmospheres. 1999;104;(D7):81918200. (in English) DOI: 10.1029/1998JD100092.
20. Evan S., Brioude J., Rosenlof K.H. et al. Rapid ozone depletion after humidification of the stratosphere by the Hunga Tonga Eruption. Science. 2023;382;(6668):eadg2551. (in English) DOI: 10.1126/science.adg2551.
21. Zhou X., Geller MA., Zhang M. Cooling trend of the tropical cold point tropopause temperatures and its implications. JGR:Atmospheres. 2001; 106;(D2):1511-1522. (in English) DOI: 10.1029/2000JD900472.
22. Thomas GE., McPeters RD., Jensen EJ. Satellite observations of polar mesospheric clouds by the solar backscattered ultraviolet spectral radiometer: Evidence of a solar cycle dependence. JGR:Atmospheres. 1991; 96; (D1):927-939. (in English)
23. Stocker TF., D. Qin, Plattner G.-K. et al. IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. NY: Cambridge University Press, Cambridge, United Kingdom and New York; 2013. (in English)
24. Eliseev AV. GLOBAL METHANE CYCLE: A REVIEW. Fundamental and Applied Climatology. 2018;1:52-70. (in English) DOI: 10.21513/2410-8758-2018-1-52-70.
25. Khalikov IS. Formaldehyde in atmospheric air: sources of entry and removal routes. Environmental Chemistry. 2019;28;(6):307-317. (in Russian) DOI: 10.25996/6854.2024.24.75.001
26. Ciais P., Sabine C., Bala G. et al. Carbon and Other Biogeochemical Cycles. Climate Change 2013: The Physical Science Basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. NY: Cambridge University Press, Cambridge, United Kingdom and New York; 2013. (in English)
27. Tomshin O., Solovyev V. Features of the Extreme Fire Season of 2021 in Yakutia (Eastern Siberia) and Heavy Air Pollution Caused by Biomass Burning. Remote Sensing. 2022;14;(19):4980. (in English) DOI: 10.3390/rs14194980.
28. Kalnay E., Kanamitsu M., Kistler R. et al. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society. 1996;77;(3):437-471. (in English) DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
29. Andreev P. Mesospheric (noctilusent) clouds in the sky over the village of Us-Kyuelya, July 2021. Available at: https://ru.m.wikipedia.org/wiki/Файл:Мезосферные_(серебристые)_облака_в_небе_над_Якутией,_июль_2021_года.jpg [Accessed 2 June 2025] (in Russian)
30. Gadsden M., Schröder W. Noctilucent clouds. Berlin: Springer; 1989. (in English) 31. Lübken F. Thermal structure of the Arctic summer mesosphere. JGR:Atmospheres. 1999;104;(D8);9135-9149. (in English) DOI: 10.1029/1999JD900076.
31. Wallace JM., Hobbs PV. Atmospheric science: an introductory survey. Canada: Elsevier Academic Press; 2006:483. (in English)
32. Pertsev NN., Dalin PA., Perminov VI. et al. Analysis of noctilucent clouds’ fields according to ground-based network and airborne photography data. Izvestiya Atmospheric and Oceanic Physics. 2024;60;(2):187-194. (in English) DOI: 10.1134/S0001433824700191.
33. Rapp M., Thomas GE. Modeling the microphysics of mesospheric ice particles: Assessment of current capabilities and basic sensitivities. J. Atmos. Sol.-Terr. Phys. 2006;68;(7):715-744. (in English) DOI: 10.1016/j.jastp.2005.10.015.
34. Fritts DC., Alexander MJ. Correction to «Gravity wave dynamics and effects in the middle atmosphere». Reviews of Geophysics. 2012;50;(3):2012RG000409. (in English) DOI: 10.1029/2012RG000409.
Review
For citations:
Tyshchuk O.V., Tomshin O.A., Starodubtsev V.S., Mordovskoi P.G. Do emissions from severe fires influence the formation of noctilucent clouds? Vestnik of North-Eastern Federal University. 2025;22(4):79-93. (In Russ.) https://doi.org/10.25587/2222-5404-2025-22-4-79-93
JATS XML
















