Preview

Vestnik of North-Eastern Federal University

Advanced search

Features Variations of Methane Concentration of the Summer-Autumn Period at Arctic Station Barrow (Alaska) By Terrestrial and Satellite Data

https://doi.org/10.25587/SVFU.2020.75.55411

Abstract

Over the past two and a half centuries total methane content in the Earth’s atmosphere has more than doubled [1]. The global warming potential of methane is 20 times greater than that of carbon dioxide, considering that, monitoring and studying the properties of methane are one of the urgent tasks of modern ecology. This paper presents a study of methane concentration variations on the Arctic coast of Alaska, according to Barrow station data (1986-2018), and remote sensing data (AIRS radiometer, Aqua satellite). Analysis of the seasonal variation of methane showed that in the off-season (summer-autumn) at station Barrow quite often there are sharp jumps (increases) in methane concentration with amplitudes exceeding the background by ~ > 5% and lasting from several / tens of hours to several days. Similar events were mainly observed from June to November. It is logical to assume that this behavior of methane in summer and autumn, when methane content in the atmosphere above the northern seas is on average lower than over land, is due to the dynamics of north and south winds at the observation point (Barrow station). Studies were conducted of the dependence of methane concentration on the direction of wind, that showing significant jumps in methane concentration at the station were recorded with wind blowing from the land. In case of wind from the north, methane values generally corresponded to an unperturbed / background level. Analysis of monthly averaged distribution maps of methane concentration, based on satellite data, showed that in winter, at high latitudes, methane values above the land surface and northern seas do not differ significantly. However, in summer-autumn period, the concentration of methane over land is much higher than over the seas. Additional calculations of the trajectories of air mass movements in study area also confirmed the assumption that rapid increases in methane concentration in the summer-autumn period at station Barrow, located on the Arctic coast, is caused by the transfer from the land side of the air masses with a high methane content.

About the Authors

V. S. Starodubtsev
Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy of Sciences
Russian Federation


V. S. Solovyev
Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy of Sciences
Russian Federation


References

1. Анисимов О. А., Анохин Ю. А и др. Оценочный доклад об изменениях климата и их последствиях на территории российской Федерации. Общее резюме. - ГУ НИЦ «Планета» // ГУ НИЦ «Планета», 2008. - 28 с.

2. Пачаури Р. К., Райзингер А. и основная группа авторов (ред.) МГЭИК: Изменение климата: Обобщающий доклад. Вклад рабочих групп I, II, III в Четвертый доклад об оценке Межправительствен-ной группы экспертов по изменению климата // МГЭИК, Женева, Швейцария, 2007 - 104 с.

3. J. T. Kiehl, Kevin E. Trenberth. Earth’s Annual Global Mean Energy Budget // Bulletin of the American Meteorological Society. - Vol. 78, № 2, 1997 - P. 197-208.

4. Бажин Н. М. Метан в атмосфере // Соросовский образовательный журнал, Т.6 №3, 2000. - С. 52-57.

5. Saunois M., Bousquet P., Dlugokencky et al. The global methane budget 2000-2012 // Earth System Science Data 8, 2016. - P. 697-751.

6. IPCC, Climate Change: Radiative Forcing of Climate Change and An Evaluation of the IPCC IS92 Emission Scenarios - J.T. Houghton, L.G. Meira Filho, J. Bruce, Hoesung Lee, B.A. Callander, E. Haites, N. Harris and K. Maskell (Eds.) // Cambridge University Press, UK, 1994. - P. 1-339.

7. Обжиров А. И., Телегин Ю. А., Болобан А. В. Потоки метана и газогидраты в Охотском море // Подводные исследования и робототехника, №1 (19), 2015. - С. 56-62.

8. Юрганов Л. Н., Лейфер А., Вадаккепулиямбатта С. Признаки ускорения возрастания концентра-ции метана в атмосфере после 2014 года: спутниковые данные для Арктики // Современные проблемы дистанционного зондирования Земли из космоса. - Т.14 №5, 2017. - С. 248-258.

9. Yurganov L., Muller-Kager F., Leifer I. Methane increase over the Barents and Kara seas after the autumn pycnocline breakdown: satellite observations // Advances in Polar Science. - Vol. 30 №4, 2019 - P. 382-390.

10. IPCC, Intergovernmental Panel on Climate Change, Second Assessment Report: Climate Change // Cambridge University Press, 1995. - P. 1-572.

11. Shakhova N., Semiletov I., Salyuk A., Kosmach D. Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? // Geophysical Research Abstracts, EGU General Assembly 2008, 10, EGU2008-A-01526.

12. Антонов К. Л., Поддубный В. А. и др. Некоторые итоги мониторинга парниковых газов в арктическом регионе России // Арктика: экология и экономика, № 1 (29), 2018. - С. 56-67.

13. Platt S. M., Eckhardt S., Ferre B., et al. Methane at Svalbard and over the European Arctic ocean // Atmospheric Chemistry and Physics. - Vol. 18(23), 2018 - P. 17207-17224.

14. James, R. H., Bousquet, P., Leifer, I. et al. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review // Limnology and Oceanography. - Vol. 61, 2016. - P. 283-299.

15. Miller S., Miller C., Commane R., et al. A multi-year estimate of methane fluxes in Alaska from CARVE atmospheric observations // Global Biogeochemical Cycles. - Vol. 30, 2016. - P. 1441-1453.

16. Thompson, R. L., Sasakawa, M., Machida, T. et al. Methane fluxes in the high northern latitudes for 2005-2013 estimated using a Bayesian atmospheric inversion // Atmospheric Chemistry and Physics. - Vol. 17, 2017. - P. 3553-3572.

17. Clearbaux C. et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder // Atmospheric Chemistry and Physics. - Vol. 9, 2009 - P. 6041-6054.

18. Schepers D., Guerlet S., Butz A. et al. Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms // Journal of Geophysical Research D: Atmospheres. - Vol.117, 2012. - P. 1-14.

19. Daniel D. Jacob, Xiong Liu et al. Satellite observations of atmospheric methane and their value for quantifying methane emissions // Atmospheric Chemistry and Physics. - Vol. 16, 2016 - P. 14371-14396.

20. Khalil, M.A.K. and R.A. Rasmussen. Sources, sinks, and seasonal cycles of atmospheric methane // Journal of Geophysical Research. - Vol. 88(C9), 1983. - P. 5131-5144.

21. R. E. Fisher, et al. Arctic methane sources: Isotopic evidence for atmospheric inputs // Geophysical Research Letters. - Vol. 38, 2011. - P. 1-6.

22. Thiband Thonat, Marielle Saunois, Phillipe Bousquet, et al. Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements // Atmospheric Chemistry and Physics, Vol. 17, 2017. - P. 8371-8394.

23. Donatella Zona, Beniamino Giolicet al. Cold season emissions dominate the Arctic tundra methane budget // Proceedings of the National Academy of Sciences of the United States of America. - Vol.113 (1), 2016. - P. 40-45.

24. Репина И. А., Аниферов А. А., Артамонов А. Ю. Метан в атмосфере Арктики по данным дистанционного зондирования, приземных измерений и моделирования // Материалы III Международной научно-практической конференции «Прикладные аспекты геологии, геофизики и геоэкологии с использованием современных информационных технологий», 2015. - С. 191-199.

25. Starodubtsev V. S., Solovyev V. S. Methane measurements at Polar Geocosmophysical Observatory “Tixie” // Proceedings of 2nd International conference «Global warming and the human-nature dimension in Siberia: social adaptation to the changes of the terrestrial ecosystem, with an emphasis on water environments» and 7th Annual International Workshop “C/H2O/Energy balance and climate over boreal and arctic regions with special emphasis on eastern Eurassia”, 2013. - P. 112-114.

26. Стародубцев В. C., Соловьев В. С. Исследование вариаций метана в приземном слое воздуха по наблюдениям на ст. Тикси // Природопользование в Арктике: современное состояние и перспективы развития. сборник научных трудов I международной научно-практической конференции. ̶ Якутск: Издательство: Северо-Восточный Федеральный университет, 2015. - С. 533-541.

27. Xiaozhen Xiong, Chris Barnet, Eric Maddy, Colm Sweeney, Xingpin Liu, Lihang Zhou and Mitch Goldberg. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS) // Journal of Geophysical Research. - Vol. 113, 2008. - P. 1-14.

28. Юрганов Л. Н., Лейфер А., Лунд Майр К. Сезонная и межгодовая изменчивость атмосферного метана над морями Северного Ледовитого океана по спутниковым данным // Современные проблемы дистанционного зондирования Земли из космоса, Т. 13. № 2, 2016. - С. 107-119.


Review

For citations:


Starodubtsev V.S., Solovyev V.S. Features Variations of Methane Concentration of the Summer-Autumn Period at Arctic Station Barrow (Alaska) By Terrestrial and Satellite Data. Vestnik of North-Eastern Federal University. 2020;(1):40-50. (In Russ.) https://doi.org/10.25587/SVFU.2020.75.55411

Views: 69


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)