Preview

Vestnik of North-Eastern Federal University

Advanced search

Equivalent Electron Subshell. Electrostatic Interaction

https://doi.org/10.25587/SVFU.2020.76.61506

Abstract

The article considers the relativistic matrix elements of the energy operator of the electrostatic interaction of N equivalent electrons located in the subshell jN. Expressions for these matrix elements are obtained using the method of irreducible tensor operators and fractional parentage of coefficients. The obtained formulas are determined through coefficients of fractional parentage and are valid for any values of the quantum number of the j moment and any number N of electrons in the subshell. A subshell can be filled both partially and almost. The angular coefficients of matrix elements can be expressed in terms of submatrix elements of unit two-electron tensor operators expressed by electron creation and annihilation operators and the formation of a complete system of operators in j-space. Operator ranks can take j+1/2 even values ranging from 0 to 2j-1. The obtained general formulas valid for any j and N in particular cases take a particularly simple form. Different recurrence relations for matrix elements are obtained. Using the Casimir operators of the unitary U(2j + 1) and symplectic Sp(2j + 1) groups allows us to further simplify the expressions for the matrix elements and to obtain different recurrence relations for the matrix elements.

About the Authors

I. S. Kychkin
M.K. Ammosov North-Eastern Federal University
Russian Federation


V. I. Sivtsev
M.K. Ammosov North-Eastern Federal University
Russian Federation


References

1. Sommerfeld A.: Zur Relativitätstheorie. I. Vierdimensionale Vektoralgebra. Ann Phys 32, 749-776 (1910).

2. Sommerfeld A.: Zur Relativitätstheorie. II. Vierdimensionale Vektoranalysis. Ann Phys 33, 649-689 (1910).

3. Дирак П. А. М. Собрание научных трудов. - Том 2. - Квантовая теория (научные статьи 1924-1947). - М., ФИЗМАТЛИТ, 2003. - 848 с. (Классики науки) ISBN 5-9221-0381-4 (Т. II)

4. Swirles B. The relativistic self-consistent field. // Proc.Roy.Soc. A. - 1935. - vol. 152. - p. 625-649.

5. Liberman D. H., Waber J. T., Cromer D. T. Self-consistent-field Dirac-Slater wave functions for atoms and ions. 1. Comparison with previos calculitions // PhysRev, 1965. - v. A27. - p. 137.

6. Safronova M. S., Safronova U. I., and Kozlov M. G. Atomic properties of actinide ions with particlehole configurations // Phys. Rev. A. - 2018. - vol. 97. - № 012511. - pp. 1-5.

7. Safronova M. S., Safronova U. I., and Kozlov M. G. Atomic properties of actinide ions with particle-hole configurations // Phys. Rev. A. - 2018. - vol. 97. - № 012511. - pp. 1-5.

8. Safronova M. S., Safronova U. I., Porsev S. G., Kozlov M. G., and Ralchenko Yu. Relativistic all-order many-body calculation of energies, wavelengths, and M1 and E2 transition rates for the 3dn configurations in tungsten ions // Phys. Rev. A. - 2018. - vol. 97. - № 012502. - pp. 1-10.

9. Ermler Walter C. jj-Coupling-based atomic self-consistent-field calculations with relativistic effective core potentials and two-component spinors// Computer Physics Communications, - 2018. - vol. 229. - p. 182-198.

10. Кычкин И. С., Сивцев В. И. Релятивистские матричные элементы оператора энергии электростатического взаимодействия в случае одной подоболочки эквивалентных электронов // Вестник СВФУ, 2018. - № 6. - С. 86-93.

11. Собельман И. И. Введение в теорию атомных спектров. - М.: Наука, 1977. - 320 с.

12. Кычкин И. С., Сивцев В. И. Оператор Брейта энергии межэлектронного взаимодействия // Успехи современной науки, 2017. - т. 7. - № 3. - С. 56-61.

13. Кычкин И. С. Основы релятивистской теории многоэлектронных атомов и ионов. - М.: Физматлит, 1994. - 273 с.

14. Кычкин И. С., Сивцев В. И. Единичный тензорный оператор в j-представлении // Вестник СВФУ, 2019. - № 5. - С. 44-56.

15. Кычкин И. С., Сивцев В. И. Операторы рождения и уничтожения электронов - двойной неприводимый тензорный оператор // Вестник СВФУ, 2019. - № 2. - С. 39-50.

16. Бейман Б. Ф. Лекции по применению теории групп в ядерной спектроскопии. - М.: Физматгиз, 1961. - 228 с.


Review

For citations:


Kychkin I.S., Sivtsev V.I. Equivalent Electron Subshell. Electrostatic Interaction. Vestnik of North-Eastern Federal University. 2020;(2):32-39. (In Russ.) https://doi.org/10.25587/SVFU.2020.76.61506

Views: 114


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-5404 (Print)
ISSN 2587-5620 (Online)